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Abstract— Muscle synergies in humans are context-
dependent—they are based on the integration of vision, sen-
sorimotor information and proprioception. In particular, visual
information plays a significant role in the execution of goal-
directed grasping movements. Based on a desired motor task, a
limb is directed to the correct spatial location and the posture of
the hand reflects the size, shape and orientation of the grasped
object. Such contextual synergies are largely absent from
modern prosthetic robots. In this work, we therefore introduce
a new algorithmic contribution to support the context-aware,
synergistic control of multiple degrees-of-freedom of an upper-
limb prosthesis. In our previous work, we showcased an actor-
critic reinforcement learning method that allowed someone with
an amputation to use their non-amputated arm to teach their
prosthetic arm how to move through a range of coordinated
motions and grasp patterns. We here extend this approach to
include visual information that could potentially help achieve
context-dependent movement. To study the integration of visual
context into coordinated grasping, we recorded computer vision
information, myoelectic signals, inertial measurements, and
positional information during a subject’s training a robotic
arm. Our approach was evaluated via prediction learning,
wherein our algorithm was tasked with accurately distinguish-
ing between three different muscle synergies involving similar
myoelectric signals based on visual context from a robot-
mounted camera. These preliminary results suggest that even
simple visual data can help a learning system disentangle
synergies that would be indistinguishable based solely on motor
and myoelectric signals recorded from the human user and their
robotic arm. We therefore suggest that integrating learned,
vision-contingent predictions about movement synergies into
a prosthetic control system could potentially allow systems to
better adapt to diverse situations of daily-life prosthesis use.

I. INTRODUCTION

Humans have an astounding ability to learn a variety
of motor skills, ranging from tying shoelaces, threading a
needle to shooting a basketball. A wide number of interacting
elements are involved in learning such skills. In order to be
proficient in multiple motor skills, humans learn to gather
task-relevant sensory information efficiently and use it in
decision making and the selection of control strategies.

When any muscle or muscle group is activated, the result-
ing movement is dependent on the context—the relationship
between muscle excitation and movement is variable and this
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variability is known to be context conditioned [1]. It is also
well known that vision provides critical sensory information
in the execution of goal-directed reaching and grasping
movements. The dorsal stream in our visual cortex is directly
involved in estimating position, shape and orientation of
target objects for reaching and grasping purposes. It provides
us with the ability to interact with our environment in a quick,
reliable fashion [2].

By contrast, the myoelectric control of artificial limbs
(specifically upper-limb prostheses) relies predominantly on
the activity of muscle tissue to dictate the movement of
robotic actuators within the prosthetic chassis [3]. Motor
neurons transmit electrical signals that cause muscles to
contract. These signals, also known as electromyographic
(EMG) signals, contain information about the neural signals
sent from the spinal cord to control the muscles. Despite
decades of research and development, myoelectric control of
upper-limb prostheses still has not reached its full potential,
as a large proportion of amputees stop using myoelectric
prostheses due to non-intuitive control, lack of sufficient
feedback, and insufficient functionality [4]. A fundamental
remaining issue is that there is a significant mismatch be-
tween the number of functions available in modern powered
prosthetic arms and the number of functions an amputee can
control at any given moment [5].

Apart from EMG signals traditionally used for the myo-
electric control, there are a number of other physiological
and non-physiological signals that could be used to assist in
the control of multiple prosthetic degrees-of-freedom (DOF).
To use additional signals effectively involves building a
processing unit which performs sensory and motor informa-
tion processing to effect a more rich behavioral repertoire.
Using additional sensors is important, as there are typically
a limited number of viable sites on an amputated arm for
recording EMG signals. This limits the possible space of
movements to discrete, gross movements. We hypothesize
that a prosthesis controller can emulate highly synergistic
movements traditionally considered the responsibility of the
user if equipped with non-physiological sensors (e.g., vision
and tactile sensors). By combining sensory information from
different sources, we expect a controller should be able to
detect and analyze the current context, plan the movement
strategy, and simultaneously and proportionally control mul-
tiple DOF available in the prosthesis.

In our previous work [6], [7], we outlined a learning from
demonstration (LfD) approach that could potentially allow
an amputee to use their non-amputated arm to teach their
prosthetic arm how to move in a natural and coordinated



Fig. 1: Schematic showing the flow of information during
the training period for a vision-enhanced LfD approach.

fashion. This could also be considered as a different type
of pattern recognition method that could include most if
not all aspects of traditional pattern recognition methods.
But our prior approach still has an upper bound on the
number of synergistic movements that could be learned
by the reinforcement learning (RL) agent. For example, in
the case of a transhumeral amputation (someone missing
their hand, forearm, and elbow), generated EMG signals are
not separable enough to identify various grasping patterns.
While the LfD approach described in Vasan and Pilarski
[6] learns to match a particular synergistic movement to the
user’s muscle signals, it cannot learn to discriminate between
context-dependent grasping patterns that are characterized by
highly similar EMG signals. In order to achieve situation-
dependent movement based on muscle excitation, we suggest
the control system should also be given relevant contextual
information and meta-data about the user, the robotic limb
and its environment.

In the present work, we explore how additional sensory
information can be exploited to improve synergistic control
of a multi-DOF prosthetic arm. More specifically, we equip
the prosthetic arm with artificial vision to perceive the state
of the user, prosthesis and the environment. Using this
additional information, we expect the controller should be
able to learn to distinguish between different grasp patterns
according to the context and user’s intentions (communicated
using EMG signals as shown in Fig. 1). We describe an
online approach based on reinforcement learning that could
potentially achieve context-dependent motion if presented
with contextually relevant learned or hand-designed visual
representations. When integrated with our prior work, we
believe such an approach can learn to use feedback from
the user or the control environment to continually update or
adapt its control policy. This implies that an amputee could
in principle teach his/her prosthesis to unlearn and relearn
unique reaching and grasping patterns for different target

Fig. 2: Experimental setup which includes a high-definition
camera, Bento Arm, Thalmic Myo Armband and Cyber-
Touch II. The Bento Arm as used in our trials had 5 active
DoFs including shoulder rotation, elbow flex/extend, wrist
pronation/supination, wrist flex/extend and hand open/close.

objects or settings. In this preliminary study, for clarity we
first test our hypothesis using real-time prediction learning
experiments. As described by Pilarski et al. [8], such learned
predictions can be integrated into a prosthetic control system
in straightforward ways to enhance multi-joint prosthesis
use, or act as a method by which to select the information
that should be presented to a more complex control learning
algorithm.

II. RELATED WORK

Markovic et al. [9] introduced a sensor fusion and com-
puter vision based control approach for the context-aware
control of a multi-DOF prosthesis. Their work uses a com-
bination of sensing units, comprising myoelectric record-
ing, computer vision, inertial measurements and embedded
prosthesis sensors (position and force), to develop a con-
troller that could allow a multi-DOF prosthesis to perform
simultaneous, coordinated movements. The method relies on
sensor fusion which allows for the perception of the user
(proprioception), the environment (exteroception) and their
interaction, leading to simultaneous, proportional control of
multiple DOFs through context-dependent behavior. Ghaz-
aei et al. also introduce a classification-based approach to
grasping that leverages the representational power of deep
networks [10].



III. METHODS

Similar to the experiments described by Vasan and Pilarski
[6], we assume a setting in which our target users have
undergone a unilateral, transhumeral amputation. To provide
a proof of concept in this setting, we first study the case
where a non-amputee participant has one biological hand
(right hand), and one robotic arm (left hand) that they wish
to train to appropriately respond to the commands being
generated by the muscle tissue in the user’s upper left arm
(simulating the residual limb). Compared to our prior work
[6], there are two significant changes in our experimental
setup—first, we mount a Logitech HD 1080p webcam on
top of the robotic arm (see Fig. 2 (top)) and second, we
use a Thalmic Myo armband instead of the Delsys Trigno
Wireless system to obtain EMG signals.

A. Hardware

Bento Arm: The Bento Arm is a myoelectric training tool
to assess and train upper-limb amputees in how to use their
muscle signals prior to being fit with myoelectric prostheses
[11]. We use a 5-DOF Bento Arm for the purposes of our
experiments. It is a 3D printed prototype with Dynamixel
MX Series servos.

EMG Data Acquisition: We used a 8-Channel Thalmic
Myo armband to record EMG signals from our subjects. The
Myo armband is fashioned as a wearable gesture control
and motion control device that can be worn around the
forearm/upper arm. It also provides inertial measurements
which can be used to calculate rotation and translation with
respect to a fixed frame of reference.

Motion Capture Glove: The desired joint angle configura-
tions for wrist flexion/extension (θ∗wf ) and hand open/close
(θ∗h) were defined by the subject using a CyberTouch II
system (CyberGlove Systems LLC) worn on the hand of their
training arm.

Computer Vision: We used a Logitech C920 HD Pro
Webcam mounted on top of the Bento Arm. The camera
captured images at 50 frames-per-seconds. Examples of the
images obtained from the camera are shown in Fig. 3.

The experimental task was divided for the participant
into multiple segments as follows: grasp the object on the
table, bring it up by flexing the elbow (as if the object is
being examined closely), extend the arm and bring it down
and finally drop it on the table. While the EMG control
commands remained the same for flexing and extending
the elbow, the corresponding wrist and hand trajectories
for manipulating each object was different. The hand, wrist
flexor and wrist rotator joints (denoted by θh, θf and θr
respectively) were correlated with the angular position of the
elbow joint (denoted by θe) such that there exists a policy
that could map any given elbow position uniquely into a
combination of higher dimensional joint movements. The
goal for the machine learning approach was to accurately
differentiate and predict the three different muscle synergies
shown by the user for grasping a large blue ball, a red sponge,
and a smaller yellow smiley ball as shown in Fig. 3.

Fig. 3: Three different objects for our experiment—a large
blue ball, a red sponge and a small yellow smiley ball—with
different grasp patterns. Raw input images were processed
and provided to the learning system as input features.

Phase I: Recording training data

In this phase, the able-bodied participant was instructed to
execute the task as a repetitive sequence of simple reaching
and grasping movements that were mirrored by both their
control and training arms (for an amputee, this would corre-
spond to trying to perform identical movements using their
non-amputated arm and the prosthetic arm). The training arm
demonstrated the desired movement and grasp pattern to the
prosthetic arm. During training, the elbow of the Bento Arm
was actuated via proportional myoelectric control from the
subject’s control arm, while the wrist and hand of the Bento
Arm were actuated via direct teleoperation—i.e., the Bento
Arm copied the training arm’s movements as reflected to the
contralateral side. As shown in Fig. 1, Fig. 2 (bottom) and
described above, we recorded computer vision information,
EMG signals from the Myo Armband and desired angles
from the subject’s training arm (wrist and finger joints) using
the motion capture glove and inertial measurement system.
The participant demonstrated each reaching and grasping
movement for ∼ 15min. The entire trial lasted ∼ 45min.



This task was similar to the one described in Vasan and
Pilarski [6], in which we had our participants demonstrate
a single, desired movement and grasp pattern in 3 DOF
to an actor-critic control learner. In this experiment, our
participant instead demonstrated the wrist and grasp patterns
for manipulating three different objects.

B. Learning Predictions with Temporal-Difference Methods

Temporal difference (TD) learning uses changes or differ-
ences in predictions over successive time steps to drive the
learning process. It learns how to predict a quantity that de-
pends on future values of a given signal [12]. TD algorithms
are most commonly used in reinforcement learning to predict
the expected return of a reward signal.

More recently, Sutton et al. described a generalized predic-
tion learning approach based on temporal-difference learning
[13]. They were successful in learning temporally extended
predictions about non-reward sensorimotor data. It has also
been demonstrated that learned temporally extended pre-
dictions can accurately forecast signals during prosthesis
control by both amputees and able-bodied subjects [8],
[14]–[16]. Predictions were phrased as a linear combination
of a learned weight vector, here denoted wp, and a state
approximation φp of current and next states sp and s′p
respectively. Predictions P for a given signal rp were then
computed using Pp = wp

Tφ, where wp was updated on each
time step according to the TD error δp using the following
incremental procedure, with parameters αp (learning rate), γp
(discounting parameter) and λp (decay rate of the eligibility
trace ep):
• δp ← rp + γpwp

Tφp(s′p)− wp
Tφp(sp)

• ep ← γpλep + φp(sp)
• wp ← wp + αpδpep

IV. REAL-TIME PREDICTION LEARNING USING GENERAL
VALUE FUNCTIONS (GVFS)

In this experimental setting, the EMG control signals from
the user are extremely (and deliberately) similar across the
three context-dependent control tasks. Artificial vision is the
only distinguishing input feature that could help a learning
system differentiate between the tasks. Learning accurate
predictions about the desired target trajectories for each
object gives a clear measure by which to show a system’s
ability to ascertain this simple form of context. As such, we
use standard temporal-difference learning [12] of General
Value Functions (GVFs, [13]) general to allow the system to
make predictions about the desired joint angles.

We created three GVFs for predicting the three signals
of interest θ∗j in the robotic system. We make temporally
extended predictions at a short time scale (1.0s) about three
target joint angles—wrist rotation, wrist flexion and hand
open/close. The learning agent was presented with a signal
space consisting of the following:
• Elbow joint angle and velocity 〈θe, θ̇e〉
• Object specific features: input rgb images were con-

verted into hsv format and analyzed for how often
certain colors appear and in what proportions they are to

be found in different types of images. As a very simple
contextual representation based on visual features not
available to standard prosthetic hardware, the dominant
range of ‘r’, ‘g’ and ‘b’ values of the corresponding
objects was then used to classify the target object. E.g.,
based on the number of blue pixels within a particular
threshold, target objects could be uniquely classified and
used as a single integer signal to the learner.

• The EMG control signal, given as the difference be-
tween the mean-absolute-value of the EMG signals
obtained from Myo sensors 3 and 8 (placed directly
over the biceps and triceps respectively).

We used tile coding for linear function approximation [12].
Our state representation consisted of 32 incrementally offset
tilings (width=1) for better generalization. Each tiling had a
resolution level NR = 10. The binary feature vector of length
5,000,000 was hashed down to a memory size of 8192 and
we also added a bias unit which was always active. At every
timestep, 4 continuous signals were provided to the tile coder
and m = 33 features were active. The learning parameters
were set as follows: α = 0.1/m, γ = 0.99, λ = 0.7. Weight
vectors w, e were initialized to zero. Each GVF received its
target joint angle θ∗ as the cumulant rp.

Performance of the learning system was measured based
on its ability to predict desired joint angles. All learning
algorithms were run on a Lenovo Y700 Laptop with Intel
Core i7-6700HQ @2.60GHz x 8 and 8GB RAM. We used
the Robot Operating System (ROS) Kinetic on Ubuntu 16.04
to send and receive information and commands from the
Bento Arm, CyberTouch II and the Thalmic Myo armband.
All sensorimotor information was communicated between
different systems using ROS topics. We recorded all the
sensorimotor information (from ROS topics) using rosbags.
Rosbags avoid deserialization and reserialization of the mes-
sages. After recording, we can playback the data in a time
synchronized fashion and simulate real-time sampling and
learning conditions for different hyper-parameter choices.

V. RESULTS

As shown in the results, the system was able to success-
fully anticipate the joint trajectories initiated by the subject
for all three different objects. Accurate predictions were
observed after 5 − 6min of real-time sampling (simulated
by playing back recorded data and synchronized using times-
tamps) and learning. Here the normalized predictions P̄p at a
time scale of 1.0s (colored lines) are compared against cor-
responding target joint angles (grey lines). The prediction Pp

is dependent on the timescale (i.e., time constant) of return
predictions determined by γ (i.e., the discount factor). For
comparison with raw signals, normalized return predictions
(P̄p) are therefore scaled according to the time constant, i.e.,
P̄p = Pp ∗ (1 − γp). Fig. 4 shows an example of wrist
rotation angle prediction after two offline learning passes
through 10mins of recorded training data from the subject
demonstrations. The agent was tasked with learning three
target joint angles in parallel—wrist flexion, wrist rotation
and hand open/close. The training phase lasted for ∼ 90mins



Fig. 4: Comparison of target (grey line) and predictions (colored lines) of wrist rotation trajectories over training and testing
periods. This plot shows the joint angle predicted by the TD learner for the able-bodied subject during training and testing.

Fig. 5: Comparison of target (grey line) and predictions (colored lines) of wrist flexion trajectories over training and testing
periods. This plot shows the joint angle predicted by the TD learner for the able-bodied subject during training and testing.



Fig. 6: Comparison of target (grey line) and predictions (colored lines) of gripper hand trajectories over training and testing
periods. This plot shows the joint angle predicted by the TD learner for the able-bodied subject during training and testing.

(two offline passes through 15mins of recorded data for each
demonstration) and the testing phase lasted for ∼ 15mins
(one offline pass through 5mins of recorded data for each
demonstration). Fig. 5 and 6 show examples for normalized
joint angle predictions for wrist flexion and gripper hand
respectively over training and testing periods.

VI. DISCUSSION

A. Prediction in Adaptive Control

Highly skilled motor behavior relies on our brain learning
both to control its body as well as predict the consequences
of this control. Flanagan et al. studied the relation between
predictions as control during motor learning [17]. They found
different time scales of learning for predictions and control,
with predictions being learned much faster than control.
Pilarski et al. integrated learned anticipatory predictions
into the control the actuators of a multi-joint prosthesis for
use by amputees, especially amputees with limited signal
recording sites on their amputated limbs [8]. They were
able to make accurate, anticipatory predictions at different
timescales about various joint angles, dynamics, and EMG
signals. Their integration of real-time prediction and control
learning promises to speed up control policy acquisition,
allow unsupervised adaptation in myoelectric controllers, and
facilitate coordinated, synergistic movements in a mutli-DOF
prosthetic limbs. In this paper, we test the ability of our
system to learn accurate, temporally abstracted predictions
about the actuator positions of the joints controlled by the
learning agent when supplemented with contextual visual
information. In the future, we hope to implement a similar
integration of real-time prediction learning and control to
learn a larger repertoire of motor behaviors, either through
these predictions being provided to a control system as state

information (as per Pilarski et al. [8]), or via the identification
of more complex visual features that can be provided directly
to the control learning approach of Vasan and Pilarski [6].

B. Sensor Fusion for Context-Aware Control

As discussed in Vasan and Pilarski [6], the LfD paradigm
is not applicable only to prosthetic arms, but could also be
extended to wearable robots such as exoskeletons, powered
orthotics, supernumerary limbs, functional electrical stimula-
tion systems, and other assistive rehabilitation technologies.
While these devices face challenges in both hardware and
software design, a major challenge is that the robot usually
lacks the capability to adequately recognize the actions and
intentions of the human user. Consequently, it cannot assist
the user appropriately, a drawback that has been especially
emphasized in the rehabilitation robotics domain.

In most wearable robots, many sensors are already
built into the device, such as joint angle sensors, electro-
physiological measurements such as electromyography
(EMG) or electroencephalography (EEG), or alternatively
mechanical sensors or inertial measurement units (IMUs)
placed on a part of the body that is not covered by the
wearable robot. We suggest that, in the same way as vision
was used in the present work, we can and should combine
this multi-modal information (combining different sensor
types) to better learn and adapt to the needs of the user.

In the rehabilitation robotics domain, the degree of control
(DOC) for a device can greatly outnumber the number of
input channels the user has available. For example, in the
case of an amputee user, the disparity between the DOC
and the number of available input signals greatly increases
as the level of amputation increases (e.g., those with tran-
shumeral amputations can provide even fewer control signals



than those with transradial amputations). Unfortunately, this
mismatch makes the control of wearable robots difficult and
tedious. As suggested here for the case of visual sensing
during grasping, sensor fusion can potentially alleviate some
of the issues associated with controlling large DOFs with a
small subset of input signals.

In addition to the standard electro-physiological signals,
IMUs and joint angle measurement units, it may be fruitful to
add artificial vision, gaze vectors (to know where the user is
looking) and tactile sensation systems (for example, a camera
and capacitive touch systems respectively) to robotic devices
prostheses. These systems could provide useful sensory
information to the learning agent that could be used to better
perceive the environment and needs of the user.

C. Representation Learning

In this paper, we showed that it is feasible to learn to
distinguish between the desired grip trajectories for three
different objects by the addition of very simple vision-based
features. A main contribution of this work is to highlight the
utility vision-based features can have for building contex-
tual LfD algorithms in the prosthetic setting. As would be
expected, altered lighting, displacements and other factors
would not be well handled by the current proof-of-concept
learning representation used in the present work. While out
of scope for the present comparisons, and as described
below, there are numerous state-of-the art representational
approaches, both learned and engineered, that could be
implemented to well support prediction and control learning
in prosthetic LfD.

Modern day prostheses could receive a huge density of
data about the user, their physiological and psychological
needs and their environment. For example, camera data or
even additional sensors on the socket of a prosthesis can
readily provide enough contextual information to allow an
actor-critic RL system to produce varied motor synergies
in response to similar EMG signals from the user—e.g., a
system can use additional sensor and state information to
help manage the user’s degree-of-freedom problem, gener-
ating synergies that artfully align to different situations in
the user’s daily life. It is therefore important that efficient
ways of structuring prosthetic data are developed to better
represent context to a machine learning prosthetic control
system without facing the curse of dimensionality. For exam-
ple, representation learning methods built on Kanerva Coding
could potentially be used to better handle this large number
of real-world state signals [18].

While the idea of using a single state representation
to better leverage the multi-modal sensory information is
extremely appealing, it’s been shown that different function
approximators can be better at learning about different types
of data. For example, convolutional neural nets (CNNs) have
been widely successful in image classification and object
detection datasets [19]. Similarly, motor primitives have been
successful in encoding rhythmic and discrete movements.
Recurrent neural networks (RNNs) have also been extremely
successful in speech recognition and text translation [20].

Though with its own inherent challenges, one simple way to
combine all the sensory information is to extract the features
for each modality separately, then input all features into a
single sensor fusion algorithm.

D. Study Limitations and Future Developments

The experimental evaluation in this study was designed
specifically to test the hypothesis that a learning system’s
ability to make accurate predictions about context-dependent
joint trajectories in the prosthetic LfD setting will increase
when supported by visual sensor information or visual
scene features. Therefore, the scope of this pilot study was
limited to having our participant perform a discrete set of
functionally relevant movements (e.g., grasping and lifting
distinctly colored, differently oriented objects) designed to
approximate those facing a multi-DOF prosthesis user, while
also taking into account the constraints of the setup (e.g.,
desk mounted Bento Arm, and vision sensor mounted on top
of the arm instead of on the socket or the terminal device).
We are fully aware of the importance of and state of the art
in standardized evaluations of the functional effectiveness of
powered prostheses, and ongoing work is exploring how our
LfD approach generalizes across different tasks, objects, and
settings via validated eye and motion capture metrics.

VII. CONCLUSION

Our approach was able to learn contextually-accurate
predictions from joint trajectories demonstrated by an able-
bodied user though the integration of simple visual features
into the state space of the prediction learning algorithm.
These results therefore suggest important extensions to the
generality of our previously published methods for LfD in
the prosthetic setting, wherein a prosthetic user with only
limited control channels at their disposal may still be able
to effect a variety of synergistic, coordinated movements in
a situation-appropriate fashion. This suggestion remains to
be demonstrated in practice through precise control learning
follow-up experiments, and provides a path to research into
long-term control adaptation. An interesting extension to this
work is to explore the use of contextual-prediction archi-
tectures along with ACRL or alternative control approaches
in complex real-world activities with gold-standard outcome
metrics, and to further evaluate predictions for context-aware
control adaptation with a population of participants with
amputations.
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