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Abstract— Objective: Persons with normal arm function can 

perform complex wrist and hand movements over a wide range of 

limb positions. However, for those with transradial amputation 

who use myoelectric prostheses, control across multiple limb 

positions can be challenging, frustrating, and can increase the 

likelihood of device abandonment. In response, the goal of this 

research was to investigate recurrent convolutional neural 

network (RCNN)-based position-aware myoelectric prosthesis 

control strategies. Methods: Surface electromyographic (EMG) 

and inertial measurement unit (IMU) signals, obtained from 16 

non-disabled participants wearing two Myo armbands, served as 

inputs to RCNN classification and regression models. Such models 

predicted movements (wrist flexion/extension and forearm 

pronation/supination), based on a multi-limb-position training 

routine. RCNN classifiers and RCNN regressors were compared 

to linear discriminant analysis (LDA) classifiers and support 

vector regression (SVR) regressors, respectively. Outcomes were 

examined to determine whether RCNN-based control strategies 

could yield accurate movement predictions, while using the fewest 

number of available Myo armband data streams. Results: An 

RCNN classifier (trained with forearm EMG data, and forearm 

and upper arm IMU data) predicted movements with 99.00% 

accuracy (versus the LDA’s 97.67%). An RCNN regressor (trained 

with forearm EMG and IMU data) predicted movements with 

R2 values of 84.93% for wrist flexion/extension and 84.97% for 

forearm pronation/supination (versus the SVR’s 77.26% and 

60.73%, respectively). The control strategies that employed these 

models required fewer than all available data streams. Conclusion: 

RCNN-based control strategies offer novel means of mitigating 

limb position challenges. Significance: This research furthers the 

development of improved position-aware myoelectric prosthesis 

control. 
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electromyography, inertial measurement units, limb position 
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I. INTRODUCTION 

yoelectric prostheses are designed to restore lost upper 

limb motor function for individuals with amputation. 

Recreating the coordinated movements of a natural human wrist 

and hand, however, remains a challenge for those with 

transradial amputations. In response, researchers have 

developed control strategies that use pattern recognition models 

to predict and execute a user’s movement intent [1]. 

Electromyography (EMG) is currently the most commonly used 

input source for prosthesis control [2], whereby EMG signals 

generated by muscle contractions in a user’s residual limb are 

captured by electrodes embedded in a device socket. Despite 

yielding reliable device movements in research environments, 

precise decoding of movement intent from EMG signals can be 

unreliable when a wide range of limb positions are introduced 

by users during daily activities [3]. 

This significant challenge to myoelectric prosthesis control 

is known as the "limb position effect" [4]. Often, detected 

surface EMG control signals are altered when a user’s limb is 

in a position different from that in which the prosthesis 

controller was trained (usually a comfortable, low position) [4]. 

Resulting EMG signal variations can cause prosthesis control 

to degrade and unexpected prosthetic wrist and hand 

movements to occur. Researchers have investigated various 

methods of mitigating this problem, including the use of 

intramuscular electrodes [5], [6], high-density surface electrode 

arrays [7], [8], and wearable limb position sensors [9]–[14]. 

However, a reliable and practical position-aware control 

solution has yet to be found. As such, continued research is 

required.  

Various pattern recognition approaches have been explored 

to address the limb position effect on end effector control [9]–

[13], [15]–[23]. Broadly, pattern recognition approaches have 

included Statistical Models and Neural Networks (including 
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deep learning), each of which can use either classification or 

regression techniques [3], [22]. Typically, classification models 

(classifiers) and regression models (regressors) map EMG 

signal features, which are extracted from raw EMG data, to 

predict intended end effector movements [24], [25]. Classifiers 

map signal features to one of a discrete set of known classes 

(categories) of degrees of freedom (DOFs), offer control over 

multiple DOFs, but do not provide proportional control over 

device movement velocity or simultaneous control over 

multiple DOFs [2]. Conversely, regressors can map signal 

features to continuous velocity values for each DOF 

(proportional to input signal strength), offer simultaneous 

control of separate DOFs [2], but tend to be less robust than 

classifiers due to the increased complexity of their predictions 

[24]. Whether classification or regression is used for control, all 

models require a device training routine to be undertaken by the 

user, to inform pattern learning [26]. Although more training 

data generally yields stronger models, long training routines are 

cumbersome for the user [2], [27]. Overall, not only does the 

chosen pattern recognition model influence the resulting device 

control, the duration of its required training routine, the time 

needed to train the model and make predictions, and the 

complexity of the model algorithm are also considerations. 

Statistical models apply probability theory to learn patterns 

in data and are currently more often employed in position-aware 

prosthesis control research than deep learning neural network 

alternatives [3]. Some researchers have collected EMG data 

across multiple limb positions to inform statistical classifiers 

[9], [12], [13], [19], [20], while others have added positional 

information (quaternions or accelerometer data) to take limb 

orientation into account [9]–[13]. Statistical regressors have not 

been as extensively explored as classifiers in device control 

literature [24]. Nevertheless, both statistical classifiers and 

regressors offer the benefits of being straightforward to 

implement and having low computational costs [25]. Each such 

model requires representative feature extraction from EMG 

signals. This means that assumptions must be made regarding 

which features best inform movement prediction [25], [28], 

[29]. To avoid possibly making ill-informed or erroneous 

assumptions, researchers have also begun to explore the 

benefits of neural network methods for EMG-based control 

[17], [30]. 

Convolutional neural networks (CNNs) and recurrent neural 

networks (RNNs) may yield improved prosthetic movement 

prediction accuracies over statistical approaches, given the 

advantages that they offer. The first such advantage is that 

CNNs can predict intended movements from raw EMG signals 

(rather than from extracted features) [31]–[33]. This means that, 

given sufficient data, new features can be automatically 

learned, thereby avoiding the need for feature engineering. 

Another advantage is that CNNs offer the ability to combine a 

high volume of data from multiple sensors [30], [34]. This 

suggests that CNNs may prove to be effective towards learning 

the complex features of combined EMG and inertial 

measurement unit (IMU) signals across multiple limb positions. 

Furthermore, as time-domain features are commonly used for 

prosthesis control [25], recurrent neural networks (RNNs), 

which leverage the temporal behaviour of signals [35], might 

also be beneficial towards solving the limb position effect. 

Given that recurrent convolutional neural networks (RCNNs) 

can harness the collective advantages presented by CNNs and 

RNNs, they too offer a promising research direction for 

improving device control.  

Compared to statistical approaches, few studies have 

explored using RCNN or CNN-based models for prosthesis 

control. Xia et al. examined the use of RCNNs, with raw EMG 

data, for the prediction of shoulder position (irrespective of end 

effector function) [35]. Their proposed model yielded higher 

predictive accuracy than an alternative statistical regressor 

(support vector regression, SVR). Amongst other things, this 

research demonstrated that an RCNN can indeed learn features 

from raw EMG data to inform limb position. Ameri et al. 

confirmed that a CNN can be used with raw EMG data to 

predict wrist movement, and yielded offline and real-time 

performances better than those of an SVR [31]. More recently, 

Bao et al. used an RCNN to extract EMG features for the 

prediction of wrist motion [36]. This solution outperformed 

CNN-only approaches during complex wrist movements, and 

further supports the predictive potential of RCNN models. In 

2018, Phinyomark and Scheme reviewed the potential for 

developing more advanced applications of EMG pattern 

recognition using deep learning approaches [30]. Collectively, 

the abovementioned studies recommended the continued 

pursuit of deep learning, including combining CNNs with 

RNNs, further optimizing model architectures, conducting 

more online testing of such models, or testing with larger 

datasets [31], [35], [36]. 

The goal of this study was to investigate the novel use of 

position-aware RCNN-based myoelectric prosthesis control 

strategies, towards solving the “limb position effect” problem. 

To this end, this study examined device control strategies that: 

(1) combined EMG and IMU input data streams to inform 

prosthesis movements and limb positions, respectively; and (2) 

used RCNN models to make movement predictions from these 

data. For each RCNN model under investigation, resulting 

movement predictions were compared to those of commonly 

used statistical models, so that potential improvements could be 

ascertained. The criteria by which position-aware control 

strategies were evaluated included their movement prediction 

accuracy, along with the number of EMG and/or IMU data 

streams that they required. Based on these criteria, this study 

identified two promising RCNN-based myoelectric prosthesis 

control strategies that were found to be consistently accurate 

across multiple limb positions. 

II. METHODS 

A. Participants 

A total of 19 participants with no upper-body pathology or 

recent neurological or musculoskeletal injuries were recruited. 

The data from 3 participants were incomplete and as such not 

used for this study. Of the remaining 16 participants, 3 had 

previous experience with EMG control, all had normal or 

corrected to normal vision, 15 were right-handed, 8 were male, 

and the mean age was 26.4 ± 8.7 years (± 1 standard deviation). 

Each participant provided written informed consent, as 
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approved by the University of Alberta Health Research Ethics 

Board (Pro00086557).  

B. Experimental Setup 

Two Myo gesture control armbands (Thalmic Labs, 

Kitchener, Canada) were used to collect EMG and IMU data. 

Each armband contained 8 surface electrodes and an IMU. Each 

surface electrode collected 1 EMG data stream (sampled at 200 

Hz). Each IMU collected 10 limb position data streams (3 

accelerometer, 3 gyroscope, and 4 quaternion, all sampled at 50 

Hz). Using Myo Connect software, the EMG and IMU data 

were streamed into Matlab. Hardware and software limitations 

required that each Myo armband be connected to a separate 

laptop, so two Lenovo ThinkPad laptops were employed. A 

custom Matlab script, running on one laptop, captured streamed 

data from one Myo armband and simultaneously displayed 

onscreen instructions for a participant to follow. At the same 

time, another custom script ran on the second laptop to record 

data from the second Myo armband.  

C. Data Collection 

Each participant donned two Myo armbands on their self-

identified dominant arm, as shown in Fig. 1A. One was worn 

on their forearm, with a mean distance of 6.0 ± 1.9 cm distal to 

the olecranon, and electrode 1 on the lateral side of their 

forearm. The second armband was worn on their upper arm, 

with a mean distance of 12.0 ± 2.4 cm proximal to the 

olecranon, and electrode 9 on the anterior side of their upper 

arm, over the biceps muscle.  

Participants followed onscreen instructions, performing 

various movements in 4 limb positions, as described below.  

• Movements included: rest (relaxed), wrist flexion, wrist 

extension, forearm pronation, and forearm supination, as 

shown in Fig. 1B. These movements are functionally 

important for individuals with transradial amputation [37]. 

Notably, the hand open and close movements were not 

included in this study, given that wrist flexion and extension 

can instead be used to control the opening and closing of a 

prosthetic hand [31], [38]–[41]. Similarly, forearm pronation 

and supination can be used to control prosthetic wrist 

rotation.  

• Limb positions included: arm at side, elbow bent at 90°, arm 

out in front at 90°, and arm up at 45° from vertical, as shown 

in Fig. 1A.  

Data collection consisted of 6 trials: 3 static trials and 3 

dynamic trials. Rest time was provided between each trial. 

• Trials 1–3 (static) required participants to perform various 

movements (shown in Fig. 1B) using sustained isotonic 

muscle contractions. All movements were held for 5 seconds, 

separated by 5 seconds of rest. The movements were repeated 

in each of the 4 limb positions (shown in Fig. 1A). 

Participants were instructed to perform each muscle 

contraction at a moderate effort that could be sustained for 5 

seconds. 

• Trials 4–6 (dynamic) required participants to perform 

movements that oscillated either between wrist flexion and 

extension or forearm pronation and supination. The timing of 

these oscillations was demonstrated onscreen (5 cycles with 

a period of 4 seconds). These oscillations were repeated in 

each of the 4 limb positions (shown in Fig. 1A).   

D. Data Pre-Processing 

The EMG data from each Myo armband were filtered using 

a high pass filter at 20 Hz (to remove movement artifacts), as 

well as a notch filter at 60 Hz (to remove electrical noise). Then, 

the IMU data streams were resampled to 200 Hz using linear 

interpolation to align them with the corresponding EMG data. 

The resulting data from the two Myo armbands were 

synchronized.  

The static trials were segmented into movements (rest, wrist 

flexion, wrist extension, forearm pronation, and forearm 

supination). For the dynamic trials, target sinusoids were 

generated to represent movement oscillations. Given that an 

offset was evident between participants’ movements and 

onscreen oscillations, their sinusoids were corrected as follows: 

forearm EMG signal peaks were identified and used to fit a sine 

wave to represent wrist flexion/extension oscillations, whereas 

forearm IMU signal peaks and valleys (specifically from the 

accelerometer) were used to fit a sine wave to represent forearm 

pronation/supination oscillations. The resulting target sinusoids 

were then used to segment the dynamic trials into movements 

in each DOF (wrist flexion/extension, forearm 

pronation/supination). 

Next, for the purposes of the RCNN models under 

investigation and their comparative statistical models, data 

were segmented further into windows (160-millisecond with a 

40-millisecond offset). For the statistical models, time-domain 

features were then calculated for each EMG or IMU channel, in 

each window. These included 4 commonly-used EMG features 

(mean absolute value, waveform length, Willison amplitude, 

and zero crossings [42]) and 1 IMU feature (mean value). For 

the RCNN models, time-domain features were not calculated 

and instead, filtered signal data remained in each window.  

RCNN and Comparative Statistical Models 

1) RCNN Models – Architecture  

Matlab software was used to implement the RCNN models. 

Bayesian optimization automatically determined the number of 

convolution layers, number of filters, filter size, pooling size, 
 

Fig. 1.  (A) The placement of each Myo armband, along with limb positions 

used in data collection, and (B) movements used in data collection.  
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and patience required in this study. Optimization was 

performed in two steps: first, the number of layers along with 

each hyperparameter being optimized were determined using a 

broad range of values; thereafter, values were refined using a 

narrower range (centered at earlier optimized values). 

Our resulting RCNN models had architectures that consisted 

of 27 (classification) or 26 (regression) layers, as shown in Fig. 

2 [43]. In these models, a sequence input layer first received and 

normalized the training data. Then, a sequence folding layer 

was used, allowing convolution operations to be performed 

independently on each window. This was followed by a block 

of 4 layers: a convolution, a batch normalization, a rectified 

linear unit (ReLU), and a maximum pooling layer. This block 

was repeated 3 more times. Each of the 4 maximum pooling 

layers had a pooling size of 1x2. A block of 3 layers followed: 

a convolution, a batch normalization, and a ReLU layer.  

• For limb position classification, the optimal number of 

filters in the convolution layers were determined to be 32, 32, 

32, 64, and 64, respectively, and each had a filter windows 

size of 1x3. 

• For movement classification and regression, the optimal 

number of filters in the convolution layers were determined 

to be 64, 32, 64, 32, and 16, respectively, and each had a filter 

window size of 1x5.  

Subsequent layers included a sequence unfolding layer (to 

restore the sequence structure), a flatten layer, a long short-term 

memory (LSTM) layer, and a fully connected layer. Finally, 

either (1) a softmax layer and classification layer were used, or 

(2) simply a regression layer was used. To prevent overfitting, 

a patience parameter was set that triggered early stopping. 

2) Comparative Statistical Models 

Given that linear discriminant analysis (LDA) is commonly 

used in prosthesis control research [9]–[11], this study opted to 

use LDA classifiers for comparisons to both RCNN limb 

position classifiers and RCNN movement classifiers. The 

chosen LDA discriminant type was pseudo-linear, since 

columns of zeros were occasionally present in rest classes for 

some features (including Willison amplitude and zero 

crossings). 

SVR regressors were used for comparisons to RCNN 

movement regressors, as per earlier research [31], [35]. The 

SVR regressors used a linear kernel for input data mapping, 

given that it yielded the most accurate movement predictions in 

earlier pilot work (compared to radial basis function and 

polynomial kernel alternatives). This pilot work was based on 

EMG and IMU data from multiple limb positions. The kernel 

scale parameter was automatically optimized by Matlab 

software and no kernel offset was used.  

E. Classification and Regression 

This study explored models that predicted limb positions and 

movements. Three model specifications (S1–S3) were 

investigated, in addition to a comparative baseline model. All 

model specifications were substantiated by earlier research: 

 

S1 – Model trained with EMG data from all limb positions 

[9], [12], [13], [19], [20] 

S2 – Model trained with EMG and IMU data from all limb 

positions [9]–[11], [13] 

S3 – Models trained with EMG data at each limb position, 

with subsequent predictions occurring in a 2-staged 

sequence: 1st, a limb position was classified using IMU 

data; 2nd, a corresponding model (trained at that 

specified limb position) predicted a wrist movement 

using EMG data [9]–[12] 

Baseline – Model trained with EMG data from arm at side  

Note that S1 and the Baseline require only EMG data, whereas 

S2 and S3 require both EMG and IMU data. Specifications S1–

S3 and the Baseline were each implemented using an RCNN 

classifier, an RCNN regressor, an LDA classifier, and an SVR 

regressor (16 models total). The training and testing of each 

model were performed in Matlab using an Intel® Core™ i9-

9900K CPU (3.60 GHz).  

1) Limb Position Classification 

RCNN limb position classifiers were compared to LDA limb 

position classifiers in this study. The RCNN classifier inputs 

were signals from each window and the LDA classifier inputs 

were time-domain features from each window. Both classifiers 

outputted a predicted limb position class (shown in Fig. 1A) for 

each window. Limb position classifiers were trained with Trials 

1–2 (static) data from a participant and subsequently tested 

using Trial 3 (static) data from that same participant. This 

 
Fig. 2.  RCNN architecture: sequence input layer (Input); sequence folding layer (Folding); 4 blocks of convolution, batch normalization (Normalization), rectified 
linear unit (ReLU), and maximum pooling (Pooling); 1 block of convolution, batch normalization, and ReLU; sequence unfolding layer (Unfolding); flatten layer; 

long short-term memory (LSTM) layer; fully connected layer; and finally either (1) softmax and classification layers, or (2) a regression layer. Figure made using 

NN-SVG [43]. 
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approach was motivated by current myoelectric prosthesis use, 

wherein the user must train their device controller before it can 

predict movement intent.  

Prosthesis control research has shown that the use of 

numerous data streams (EMG and/or IMU) can result in longer 

machine learning processing times and/or increased hardware 

costs [10]. Taking these drawbacks into consideration, the 

specific data stream types that would most accurately inform 

limb position were initially investigated. Data from both Myo 

armbands were used in this investigation, with the RCNN and 

LDA limb position classifiers trained and tested using the 

following data stream combinations: 

• All EMG and IMU data streams from both Myo armbands 

• All EMG data streams from both Myo armbands 

• All IMU data streams (quaternions, gyroscope, and 

accelerometer) from both Myo armbands 

• Only accelerometer data streams [9], [12], [23] from both 

Myo armbands 

Note that gyroscope and quaternion data streams were not 

investigated independently. Earlier pilot work revealed that 

accelerometer data better informed limb position in comparison 

to gyroscope and/or quaternion data. 

2) Movement Classification  

RCNN movement classifiers were compared to LDA 

movement classifiers. As with limb position classification, the 

RCNN movement classifier inputs were signals from each 

window and the LDA classifier inputs were time-domain 

features from each window. Both the RCNN and LDA 

movement classifiers outputted a predicted movement class 

(shown in Fig. 1B) for each window. Movement classifiers 

were trained with Trials 1–2 data from a participant, and 

subsequently tested using Trial 3 data from that same 

participant.  

Movement classifiers were trained, tested, and compared 

under model specifications S1–S3. The predictive accuracies of 

these classifiers were compared to those of a baseline classifier 

(BC), trained with only EMG data collected with each 

participant’s arm at their side (as per standard prosthesis 

training). Additionally, to minimize the number of data streams 

necessary for movement classification, each classifier was 

trained with the following combinations:  

• Data (EMG and, when applicable, IMU) from only the 

forearm Myo armband 

• Data from both Myo armbands 

• EMG data from the forearm and IMU data from both Myo 

armbands (when applicable)  

3) Movement Regression  

RCNN movement regressors were compared to SVR 

movement regressors. The RCNN and SVR movement 

regressors used the same inputs as did the RCNN and LDA 

movement classifiers, respectively. However, the RCNN and 

SVR regressors outputted continuous movement predictions, 

denoting muscle activation intensity for each DOF 

(flexion/extension and pronation/supination) in each window. 

DOF range endpoints included: 

• full flexion = -1, full extension = 1 

• full pronation = -1, full supination = 1 

Within each DOF range, 0 indicated rest. Notably, a single 

RCNN regressor was capable of yielding movement prediction 

values for both DOFs simultaneously. In comparison, two SVR 

regressors were required to yield the same movement 

predictions, given that a single SVR regressor can only predict 

movements for one DOF.  

RCNN and SVR movement predictions were then post-

processed: (1) they were smoothed using the prediction from 

the previous window via a moving average filter [44]; (2) 

predictions between -0.2 and 0.2 were suppressed to 0 [45]; and 

(3) predictions greater than 1 or less than -1 were clipped to 1 

or -1, respectively.   

Movement regressors were trained with Trials 4–5 (dynamic) 

data from a participant and subsequently tested using Trial 6 

(dynamic) data from that same participant. Movement 

regressors were trained, tested, and compared under model 

specifications S1–S3. The predictive accuracies of these 

regressors were compared to those of a baseline regressor (BR), 

trained with only EMG data collected with each participant’s 

arm at their side (as per standard prosthesis training). For S3, 

when RCNN movement regression was investigated, RCNN 

limb position classification was used (that is, S3’s models were 

all RCNN). Conversely, when SVR movement regression was 

investigated, LDA limb position classification was used (that is, 

S3’s models were all statistical). As detailed in the previous 

Movement Classification section, each movement regressor 

under S1–S3 and the Baseline was trained with the same three 

combinations of data streams.  

F. Outcome Measures and Statistical Analysis 

1) Prediction Accuracy Calculations 

Limb Position Classifiers: The predicted limb positions 

performed by the participants were compared to actual limb 

position classes, with resulting Trial 3 accuracies presented in 

the Results section as percentages (averaged across 

participants).  

Movement Classifiers: The predicted movements performed 

by the participants were compared to actual movement classes, 

with resulting Trial 3 accuracies presented in the Results section 

as percentages (averaged across participants).  

 
Fig. 3.  Active and inactive periods for each degree of freedom (DOF). An 

active period is when movements are observed in a given DOF, and an inactive 

period is when that DOF is in rest while movements are observed in the other 

DOF.  
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Movement Regressors: Unlike movement classifiers, which 

were trained with static data (discrete values), movement 

regressors were trained and tested with data from dynamic trials 

(continuous values). As such, the prediction accuracy of 

movement regressors was determined using R2 (coefficient of 

determination) calculations. Recall that the dynamic data 

consisted of movements that oscillated between either wrist 

flexion and extension or forearm pronation and supination – 

that is, in only one DOF at a time. Given this, two kinds of 

movement periods (or states) occurred for each DOF: active 

periods, wherein movements were observed in that DOF, and 

inactive periods, wherein rest occurred in that DOF while 

movements were observed in the other DOF, as shown in Fig. 

3. 

• For active periods, R2 values were calculated by 

comparing movement predictions to the target sinusoids. 

Resulting Trial 6 values are presented in the Results 

section as percentages (averaged across participants). 

• For inactive periods, however, R2 values could not be 

calculated. This is because the actual movements in those 

periods form a horizontal line at 0 (see Fig. 3), with R2 

becoming an invalid measure of fit. As such, standard 

deviations of the movement predictions were calculated 

instead [45], to reveal the amount of predictive variation. 

A low standard deviation indicated a high prediction 

accuracy (that is, one with minimal unwanted movement 

predictions). Resulting Trial 6 values are presented in the 

Results section (averaged across participants). 

The Kolmogorov-Smirnov test was conducted and revealed 

that all prediction accuracies did not follow a normal 

distribution. Therefore, the non-parametric Friedman’s 

Analysis of Variance and post-hoc Wilcoxon signed-rank tests 

were used to identify significant prediction accuracy 

differences across combinations of data streams (for a given 

classifier or regressor).    

2) Confusion Matrices 

Of the movement classifiers and regressors under 

investigation, the best-performing were further analyzed using 

confusion matrices. When creating confusion matrices for 

regressors, predictions and target sinusoid values were 

categorized into rest, flexion, extension, pronation, and 

supination using the following rules: (1) values between -0.2 

and 0.2 in both DOFs were categorized as rest (in accordance 

with the chosen post-processing threshold); and (2) for all non-

rest values, flexion/extension predictions were compared to 

pronation/supination predictions, whereby the greater absolute 

values between them were used to identify movement 

categories. When creating confusion matrices for the classifiers 

under further investigation, such categorization was 

unnecessary.  

3) Overall Comparisons 

Finally, to facilitate direct comparisons between all 

movement classifiers and regressors under investigation, their 

root mean square errors (RMSEs) were calculated. RMSE 

provided a measure of the deviation between predicted and 

target values. Other studies have used similar measures to 

compare the performance of classifiers and regressors [46]–

[48]. To calculate RMSE, movement classification predictions 

and actual movement classes were converted to values of -1, 0, 

or 1 in each DOF.  

III. RESULTS 

A. Limb Position Classification 

The mean limb position classification accuracies (across 

participants) of the RCNN and LDA classifiers, using four 

combinations of data streams from both Myo armbands, are 

shown in Fig. 4 and Table A1 (in Appendix A). Notably, both 

the RCNN and LDA classifiers predicted limb positions most 

accurately when the IMU’s accelerometer data alone were used 

(99.01% for RCNN, 98.66% for LDA; a 0.35% difference 

between these).  

The mean training and prediction times of the RCNN and 

LDA classifiers, using the same four combinations of data 

streams from both Myo armbands, are shown in Table B1 (in 

Appendix B). In addition to yielding the highest prediction 

accuracies, both the RCNN and LDA classifiers resulted in 

decreased training times when only accelerometer data were 

used (RCNN: 1.68 minutes, LDA: 38.48 milliseconds) versus 

when all data streams were used (RCNN: 2.52 minutes, LDA: 

89.19 milliseconds). Of note, all classifiers took less than 1 

millisecond per prediction, which is well below the 100-

millisecond threshold for optimal controller delay [49] 

(although, admittedly, the computer used in this study was 

much faster than an embedded processor in a myoelectric 

prosthesis). 

Given these results, for subsequent movement classification 

and regression investigations, the quaternion and gyroscope 

data streams from the IMU were eliminated. Furthermore, the 

limb position classifier in model specification S3 used only 

accelerometer data streams.  

 
Fig. 4.  Mean limb position classification accuracy (across participants) using 

RCNN and LDA classification for each combination of data streams: all EMG 

and IMU data streams from both Myo armbands (red); all EMG data streams 

from both Myo armbands (blue); all IMU data streams from both Myo 

armbands (black); and only accelerometer data streams from both Myo 
armbands (green). One standard deviation of each classification accuracy is 

shown with error bars, and significant prediction accuracy differences across 

combinations of data streams are indicated with asterisks (*: p < 0.05, **: p < 

0.01, ***: p < 0.001). 
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B. Position-Aware Movement Classification: S1–S3 

 The mean movement classification accuracies (across 

participants) of the RCNN and LDA classifiers, under each 

specification and using three combinations of data streams, are 

shown in Fig. 5 and Table A2 (in Appendix A). As expected, 

the baseline RCNN classifier and baseline LDA classifier 

yielded the least accurate movement predictions 

(approximately 85% for each, when using only forearm Myo 

armband data streams). Overall, the RCNN classifier under S2, 

trained with EMG data from the forearm Myo armband and 

accelerometer data from both Myo armbands, yielded the most 

accurate movement predictions (99.00%). The LDA classifier 

under S2 using the same training data predicted movements 

with a slightly lower accuracy (97.67%). So, in comparison, this 

RCNN classifier was 1.33% more accurate than the 

corresponding LDA classifier. Generally, most of the position-

aware RCNN and LDA classifiers yielded movement 

prediction accuracies over 95%, especially those under S2 and 

S3.  

The mean training and prediction times of the RCNN and 

LDA classifiers, under each specification and using three 

combinations of data streams, are shown in Table B2 (in 

Appendix B). On average, the RCNN classifiers under S1 and 

S2 took approximately 2 minutes to train, whereas RCNN 

classifiers under S3 took 9 minutes to train. The LDA classifiers 

under S1 and S2 took approximately 26 milliseconds to train, 

whereas LDA classifiers under S3 took 84 milliseconds to train. 

When comparing training times across specifications, RCNN 

and LDA classifiers under S3 required more time than 

classifiers under other specifications. Of note, all classifiers 

took less than 6 milliseconds per prediction, which is well 

below the 100-millisecond threshold for optimal controller 

delay [49]. 

Given that the RCNN classifier under S2, trained with EMG 

data from the forearm Myo armband and accelerometer data 

from both Myo armbands, predicted movements most 

accurately, its predictions were further investigated using 

confusion matrices for each limb position, as shown in Fig. 6. 

The RCNN classifier under S2’s movement prediction accuracy 

was found to be consistent across all limb positions, with a 

roughly equal proportion of errors across classes. 

C. Position-Aware Movement Regression: S1–S3 

Recall that this study used two outcome measures to assess 

movement regression predictive accuracy: R2 values during 

active periods and standard deviations during inactive periods. 

The mean R2 values (across participants) of the RCNN and SVR 

movement regressors, under each specification and using three 

combinations of data streams, are shown in Fig. 7 and Table A3 

(in Appendix A). The corresponding mean standard deviations 

are presented in Table I. For both flexion/extension and 

pronation/supination DOFs, the RCNN regressor under S2 

yielded the highest R2 values during active periods and the 

lowest standard deviations during inactive periods (compared 

to standard deviations of predictions made with the other 

RCNN regressors). Overall, the RCNN regressor under S2, 

trained with EMG and accelerometer data from the forearm 

Myo armband, yielded high R2 values for both DOFs (84.93% 

for flexion/extension and 84.97% for pronation/supination), 

while reducing the required number of data streams. 

Conversely, the SVR regressor under S2, also using EMG and 

 
Fig. 5.  Mean movement classification accuracy (across participants) using (A) 

RCNN classification and (B) LDA classification, under each classification 

specification: the baseline classifier (BC), specification 1 (S1), specification 2 

(S2), and specification 3 (S3). Accuracies are provided for each combination 
of data streams: data from only the forearm Myo armband (red); data from both 

Myo armbands (blue); and EMG data from the forearm and accelerometer 

(Accel) data from both Myo armbands (when applicable, black). One standard 

deviation of each classification accuracy is shown with error bars, and 

significant prediction accuracy differences across combinations of data 

streams are indicated with asterisks (*: p < 0.05, **: p < 0.01, ***: p < 0.001). 

 
Fig. 6.  RCNN movement classification confusion matrices, across participants for (A) arm at side, (B) elbow at 90°, (C) arm out at 90°, and (D) arm up at 45° 

under S2 using EMG data from the forearm Myo armband and accelerometer data from both Myo armbands. Movement classes are rest, flexion (flex), extension 

(ext), pronation (pro), and supination (sup). 
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accelerometer data from the forearm Myo armband, yielded 

much lower R2 values (77.26% for flexion/extension and 

60.73% for pronation/supination). The RCNN regressor had R2 

values that were 7.67% greater in flexion/extension and 24.24% 

greater in pronation/supination than those of the corresponding 

SVR regressor.  

When comparing standard deviations, the RCNN regressor 

under S2 had a flexion/extension standard deviation of 4.20% 

and a pronation/supination standard deviation of 5.11%. 

Conversely, the corresponding SVR regressor had standard 

deviations of 3.19% and 8.10%, for these same movements. The 

RCNN regressor had a flexion/extension standard deviation 

1.01% higher than that of the SVR regressor, and a 

pronation/supination standard deviation 2.99% lower than that 

of the SVR regressor.  

The mean training and prediction times of the RCNN and 

SVR regressors under each specification, using three 

combinations of data streams, are shown in Table B3 (in 

Appendix B). On average, the RCNN regressors under S1 and 

S2 took approximately 1 minute to train, whereas RCNN under 

S3 took 3 minutes to train. The SVR regressors under S1 and 

S2 took approximately 21 seconds to train, whereas SVR 

regressors under S3 took 8 seconds to train. Of note, all 

regressors took less than 6 milliseconds per prediction, which 

is well below the 100-millisecond threshold for optimal 

controller delay [49]. 

Given that the RCNN regressor under S2, trained with EMG 

and accelerometer data from the forearm Myo armband, 

predicted movements most accurately, its predictions were 

further investigated. These predictions were categorized into 

movement classes (rest, flexion, extension, pronation, and 

supination), and the resulting confusion matrices for each limb 

position were generated, as shown in Fig. 8. The RCNN 

regressor under S2’s movement prediction accuracy was found 

to be consistent across all limb positions, but most errors were 

related to rest.   

 
Fig. 7.  Mean movement regression R2 values (across participants) using (A) RCNN flexion/extension regression, (B) SVR flexion/extension regression, (C) RCNN 

pronation/supination regression, and (D) SVR pronation/supination regression, under each specification: the baseline regressor (BR), specification 1 (S1), 

specification 2 (S2), and specification 3 (S3). R2 values are provided for each combination of data streams: data from only the forearm Myo armband (red); data 

from both Myo armbands (blue); and EMG data from the forearm and accelerometer (Accel) data from both Myo armbands (when applicable, black). One standard 
deviation of each R2 value is shown with error bars, and significant prediction accuracy differences across combinations of data streams are indicated with asterisks 

(*: p < 0.05, **: p < 0.01, ***: p < 0.001). 

TABLE I 
REGRESSION STANDARD DEVIATIONS IN INACTIVE PERIODS 

S
p
ec

if
ic

at
io

n
 

Data Streams 

Flexion/ 

Extension 

Standard 

Deviation (%) 

Pronation/ 

Supination 

Standard 

Deviation (%) 

RCNN SVR RCNN SVR 

BR 
Forearm EMG 10.76 4.85 16.01 13.50 

Both EMG 8.08 5.02 21.15 16.36 

S1 
Forearm EMG 5.74 3.47 11.14 7.59 

Both EMG 5.89 3.53 8.80 9.73 

S2 

Forearm EMG + Accel 4.20 3.19 5.11 8.10 

Both EMG + Accel 4.74 3.25 5.76 4.05 

Forearm EMG + Both Accel 4.50 3.13 5.39 4.13 

S3 

Forearm EMG + Accel 8.81 4.56 11.02 13.71 

Both EMG + Accel 6.56 4.97 8.91 13.82 

Forearm EMG + Both Accel 7.70 4.23 11.02 13.21 

Mean standard deviations (across participants) using the RCNN 

flexion/extension regression, SVR flexion/extension regression, RCNN 

pronation/supination regression, and SVR pronation/supination regression, 
under each specification: the baseline regressor (BR), specification 1 (S1), 

specification 2 (S2), and specification 3 (S3). Standard deviations are provided 

for each combination of data streams: data from only the forearm Myo 

armband; data from both Myo armbands; and EMG data from the forearm and 

accelerometer (Accel) data from both Myo armbands (when applicable). 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2022.3140269, IEEE
Transactions on Biomedical Engineering

9 

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

D. Results Summary 

A comparative summary of the classifiers and regressors that 

were investigated in this study is presented in Table II, wherein 

the RMSE was calculated for all movement predictions. Table 

II identifies the position-aware control strategies that most 

accurately predicted movements — those with an RMSE less 

than 0.22 (this threshold was chosen as it represents the 70th 

percentile of accuracy).  

Overall, the best classifier was determined to be the RCNN 

classifier under S2, and the best regressor was the RCNN 

regressor under S2 – both yielded the most accurate movement 

predictions, while using fewer than all available data streams.  

IV. DISCUSSION 

The goal of this study was to investigate RCNN-based 

position-aware myoelectric prosthesis control strategies, using 

combined EMG and IMU input data streams. EMG signals 

primarily informed intended movements, whereas IMU signals 

primarily provided context about limb position. Classifiers and 

regressors used these signals to make position-aware movement 

predictions. Recall that three model specifications were 

explored:  

S1 – Model (classifier or regressor) trained with EMG data 

from all limb positions  

S2 – Model trained with EMG and IMU data from all limb 

positions 

S3 – Models trained with EMG data at each limb position, 

with subsequent predictions occurring in a 2-staged 

sequence: 1st, a limb position was classified using IMU 

data; 2nd, a corresponding model (trained at that 

specified limb position) predicted a wrist movement 

using EMG data 

For this study, a favourable position-aware myoelectric 

prosthesis control strategy was considered to be one where a 

classifier or regressor yielded accurate movement predictions, 

using the fewest possible data streams.  

A. Position-Aware Classification 

This study corroborates and extends the findings of earlier 

prosthesis control strategy research that likewise used 

classifiers under model specifications S1–S3. Such research 

yielded improved movement predictions compared to a baseline 

classifier [9], [10], [11]. Fougner et al. found that LDA 

classification under S2 yielded the most accurate movement 

predictions [9], whereas Geng et al. concluded that LDA 

classification under S3 proved to be the most accurate [10], 

[11].  

Of the position-aware classifiers under S1–S3 that were 

investigated in this study, the most promising was the RCNN 

classifier under S2 (with EMG data from the forearm Myo 

armband and accelerometer data from both Myo 

armbands). It yielded the highest movement prediction 

accuracy (99.00%, versus the LDA’s at 97.67%) while 

requiring a reduced number of data streams. The success of this 

classifier under S2 is consistent with Fougner et al.’s 

observations [9]. Notably, classifiers under S1 performed less 

accurately compared to those under S2 because accelerometer 

data (and consequently limb position information) was not 

included under S1. Additionally, classifiers under S3 performed 

less accurately than those under S2, likely because the 

classification sequence of S3 (with two stages) introduced the 

potential to compound errors.  

This study’s RCNN classifier under S2 yielded more 

accurate movement predictions than did classifiers in earlier 

research. As such, this work offers encouraging results towards 

solving the limb position effect. 

B. Position-Aware Regression  

To our knowledge, only one other study has implemented a 

regression-based device control strategy in the context of 

addressing the limb position effect. Park et al. employed a 

position decoder to accomplish position-independent 

regression, and tested their resulting predictive device control 

outcomes through real-time experimentation [22]. They 

predicted movements with smaller R2 values than those of this 

study, but caution should be taken when comparing their real-

time results to those of this offline work.  

Of the position-aware regressors under S1–S3 that were 

investigated in this study, the most promising was the RCNN 

regressor under S2 (with EMG and accelerometer data 

from the forearm Myo armband). It yielded the highest 

movement prediction accuracy (with R2 values of 84.93% for 

wrist flexion/extension and 84.97% for forearm 

TABLE II 

MOVEMENT PREDICTION ACCURACY SUMMARY 

Model and Specification 

Root Mean Square Error 

(calculated with different 
data streams) 

Forearm 
EMG 

+ Accel 

Both EMG 

+ Accel 

Forearm 

EMG 

+ Both 

Accel 

C
la

ss
if

ie
r 

BC 
RCNN 0.36 0.49  

LDA 0.40 0.50  

S1 
RCNN 0.24 0.20  

LDA 0.27 0.24  

S2 
RCNN 0.11 0.14 0.09 

LDA 0.16 0.15 0.15 

S3 
RCNN 0.23 0.22 0.22 

LDA 0.24 0.23 0.24 

R
eg

re
ss

o
r 

BR 
RCNN 0.34 0.36  

SVR 0.37 0.36  

S1 
RCNN 0.26 0.24  

SVR 0.36 0.34  

S2 
RCNN 0.20 0.20 0.20 

SVR 0.28 0.27 0.28 

S3 
RCNN 0.27 0.25 0.27 

SVR 0.34 0.31 0.34 

Root mean square error across participants for each movement prediction 

method (classification or regression), specification (BC, BR, S1, S2, and S3), 

type of model (RCNN, LDA, and SVR), and combination of data streams (data 
from only the forearm Myo armband; data from both Myo armbands; and EMG 

data from the forearm and accelerometer (Accel) data from both Myo 

armbands, when applicable). Root mean square errors less than 0.22 are 

highlighted in green.  
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pronation/supination, versus the SVR’s at 77.26% and 60.73%, 

respectively). It also required a reduced number of data streams. 

However, this RCNN regressor predicted movements with 

lower accuracies than the investigated classifiers. This is in 

keeping with previous research that found regression to be less 

accurate than classification, due to the increased complexity of 

regression predictions (continuous values for each DOF) [24]. 

Despite being lower in predictive accuracy than classification, 

regression may offer increased functionality, through both 

simultaneous and proportional control, and as such might 

outperform classification in real-time experimentation [48].  

Of the errors that contributed to the decreased accuracy of the 

RCNN regressor under S2, the majority occurred around the 

rest periods, as evidenced in Fig. 8. These errors can be 

categorized as either false negatives (falsely predicting rest) or 

false positives (falsely predicting a movement instead of rest). 

False negatives occurred more frequently. Notably, false 

negatives can be considered acceptable in prosthesis control; 

that is, simply perceived as device responsiveness latency by 

users [51]. The detected false negatives may have resulted from 

prediction suppression, whereby prediction values between -0.2 

and 0.2 were set to 0. Note that in future work, this suppression 

threshold can be adjusted. Finally, both false negatives and false 

positives may have been caused by offsets between the 

participants’ movements and the sinusoids chosen to represent 

these movements. Undoubtedly, without a perfect match 

between sinusoids and movements, slight inaccuracies can be 

expected. 

To mitigate the occurrence of such inaccuracies, participants’ 

movements must closely track training sinusoids. It is a 

common research practice to have participants follow an 

onscreen training target (such as a moving cursor or virtual 

hand) [45], [52]–[54]. But this practice can result in the 

introduction of participant movement delays. This study 

corrected the delay between onscreen movement instructions 

and participants’ actual movements by using generated 

sinusoids for both wrist flexion/extension and forearm 

pronation/supination. To accomplish this, peak muscle 

contractions were extracted from the EMG signal data and used 

to produce wrist flexion/extension sinusoids, whereas 

accelerometer signals were used to generate forearm 

pronation/supination sinusoids. Despite making the necessary 

movement corrections in this study through the use of 

sinusoids, offsets may have still been present (although 

presumably smaller than without such corrections.  

To further reduce the occurrence of movement offsets, 

modifications could be made to the data collection methods for 

the regression training routine. For example, if a participant 

were to follow an onscreen sinusoid overlayed with their real-

time EMG signals [55] (that is, afforded visual feedback), more 

accurate instruction adherence would likely result. That same 

sinusoid could then be used as a precise training target (as 

opposed to extracting muscle and position signals’ peaks for 

sinusoids). Additionally, if participants were required to 

complete a practice dynamic trial before data collection, the 

precision with which they follow the target sinusoid would 

likely improve. 

C. Promising RCNN Outcomes 

As expected, the RCNN-based control strategies investigated 

in this study predicted movements more accurately than 

statistical-based alternatives (which was especially evident 

when comparing RCNN and SVR regressors). This may be 

because RCNNs offer the advantage of learning new features 

from complex input data. Other studies have investigated the 

use of engineered feature sets to address the limb position 

problem, and as such did not harness this advantage [17], [21], 

[23]. Despite yielding position-aware movement predictions 

using engineered features, their models did not perform quite as 

well as this study’s RCNN classifier under S2. Although these 

studies examined more extensive limb position ranges and 

movements, their lower predictive accuracies may suggest that 

for position-aware myoelectric control, learning new features 

with RCNNs may be favourable over using engineered features. 

Naturally, further research is required to confirm this.  

D. Limitations 

Limitations in this study included: the requirement for 

training routines with long durations; the number of limb 

positions and wrist movements used for training and testing 

models was not exhaustive; models were only tested on the 3rd 

or 6th trials; more training data may be required for accurate 

results in other limb positions; and only static limb positions 

were employed in this study (training with continuous limb 

positions may improve predictive accuracy [13], [19]).  

Notably, regressors were tested using data from oscillations 

in one DOF at a time. This testing method does not demonstrate 

model performance during simultaneous muscle contractions in 

two DOFs and consequently cannot translate directly to 

activities of daily living. Furthermore, data from only isotonic 

muscle contractions were recorded, rather than data resulting 

from isometric contractions (which are used to control a 

 
Fig. 8.  RCNN movement regression confusion matrices, across participants for (A) arm at side, (B) elbow at 90°, (C) arm out at 90°, and (D) arm up at 45° under 

S2 using data from the forearm Myo armband. Movement classes are rest, flexion (flex), extension (ext), pronation(pro), and supination (sup). 
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prosthesis). The performance of the models presented in this 

study may differ when isometric contractions are used. 

Finally, the feasibility of implementing RCNN-based 

prosthesis control strategies using existing hardware was not 

investigated in this study. However, as the capabilities of 

onboard prosthetic device processors continue to improve, it is 

expected that implementation might well be possible in the near 

future. 

E. Future Work 

Future work will focus on real-time testing of the promising 

RCNN-based control strategies (RCNN classifier and regressor 

under S2) presented in this study. Upcoming research will 

include real-time testing of these control strategies with both 

non-disabled participants (using a simulated prosthesis) and 

myoelectric prosthesis users. Testing using a simulated or 

actual prosthesis will require participants to use isometric 

contractions for device control. Participants will carry out 

functional tasks that simulate activities of daily living. These 

tasks will also allow for the assessment of regression control for 

simultaneous movements.  

Although the movement prediction accuracy of myoelectric 

control strategies may not always correlate with their real-time 

performance [11], [18], a reduction in the limb position effect 

can be expected in real-time experimentation (given that 

participants will have visual feedback and will be able to adjust 

their muscle contractions accordingly [44]). Improvements to 

the regression training routine that were gleaned from this study 

will be implemented in future work. Additionally, as RCNN 

classifiers under S2 required training routines with long 

durations (relative to the baseline classifiers), a generalized 

RCNN classifier will be investigated, with the goal of 

eliminating the training routine (and consequently model 

training time) altogether.  

V. CONCLUSION 

This study has identified two promising position-aware 

myoelectric prosthesis control strategies towards solving the 

“limb position effect” problem:  

(1) An RCNN classifier trained with EMG and accelerometer 

(IMU) data (captured from participants across multiple 

limb positions) predicted movements best, while requiring 

a reduced number of data streams; and  

(2) An RCNN regressor trained with EMG and accelerometer 

data (captured from participants across multiple limb 

positions) performed much better than an SVR regressor, 

although not as accurately as the aforementioned RCNN 

classifier. It also required fewer than all available data 

streams.  

It is expected that both of these RCNN-based control 

strategies will likewise yield accurate, position-aware 

movement predictions in real-time experimentation. As such, 

results of this research are anticipated to improve the usability 

of myoelectric devices for individuals with amputation, 

particularly when faced with the challenges of the “limb 

position effect”.  

APPENDIX 

Appendix A contains tables with the results shown in Fig. 4, 

5, and 7. Appendix B contains tables with the time required to 

train and test all classifiers and regressors. 
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