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Abstract

The true online TD(λ) algorithm has recently been proposed (van Seijen and Sutton,
2014) as a universal replacement for the popular TD(λ) algorithm, in temporal-difference
learning and reinforcement learning. True online TD(λ) has better theoretical properties
than conventional TD(λ), and the expectation is that it also results in faster learning. In
this paper, we put this hypothesis to the test. Specifically, we compare the performance
of true online TD(λ) with that of TD(λ) on challenging examples, random Markov reward
processes, and a real-world myoelectric prosthetic arm. We use linear function approxima-
tion with tabular, binary, and non-binary features. We assess the algorithms along three
dimensions: computational cost, learning speed, and ease of use. Our results confirm the
strength of true online TD(λ): 1) for sparse feature vectors, the computational overhead
with respect to TD(λ) is minimal; for non-sparse features the computation time is at most
twice that of TD(λ), 2) across all domains/representations the learning speed of true online
TD(λ) is often better, but never worse than that of TD(λ), and 3) true online TD(λ) is
easier to use, because it does not require choosing between trace types, and it is gener-
ally more stable with respect to the step-size. Overall, our results suggest that true online
TD(λ) should be the first choice when looking for an efficient, general-purpose TD method.

1. Introduction

Temporal-difference (TD) learning (Sutton, 1988) is a core learning technique in modern
reinforcement learning (Kaelbling et al., 1996; Sutton and Barto, 1998; Szepesvári, 2010).
One of the main challenges in reinforcement learning is to make predictions, in an initially
unknown environment, about the (discounted) sum of future rewards, the return, based on
currently observed feature values and a certain behaviour policy. With TD learning it is
possible to learn good estimates of the expected return quickly by bootstrapping from other
expected-return estimates. TD(λ) (Sutton, 1988) is a popular TD algorithm that combines
basic TD learning with eligibility traces to further speed learning.

The ability of TD(λ) to speed learning is explained by its forward view, which states
that the estimate at each time step is moved toward an update target known as the λ-return,
where the λ-parameter determines the trade-off between bias and variance of the update
target. This trade-off has a large influence on the speed of learning and its optimal setting
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varies from domain to domain. The ability to improve this trade-off by adjusting the value
of λ enables eligibility traces to improve the learning speed.

True online TD(λ) (van Seijen and Sutton, 2014) is a recently proposed variation of
TD(λ) with better theoretical properties. Specifically, it maintains an exact equivalence to
the forward view at all times. In contrast, TD(λ) accurately approximates the forward view
only for appropriately small step-sizes. Hence, it can be expected that true online TD(λ)
can do a better job in improving the learning speed. Initial experiments suggest that this
is indeed the case (van Seijen and Sutton, 2014). However, no significant empirical study
has been performed so far. In this paper, we empirically compare true online TD(λ) with
TD(λ) on a wide variety of domains.

2. Markov Reward Processes

We focus in this paper on discrete-time Markov reward processes (MRPs), which can be
described as 4-tuples of the form 〈S, p, r, γ〉, consisting of S, the set of all states; p(s′|s), the
transition probability function, giving for each state s ∈ S the probability of a transition
to state s′ ∈ S at the next step; r(s, s′), the reward function, giving the expected reward
after a transition from s to s′. γ is the discount factor, specifying how future rewards
are weighted with respect to the immediate reward. An MRP can contain terminal states,
dividing the sequence of state transitions into episodes. When a terminal state is reached
the current episode ends and the state is reset to the initial state. The return at time step
t is the discounted sum of rewards observed after time step t:

Gt =

∞∑
i=1

γi−1Rt+i ,

where Rk is the reward received at time k. For an episodic MRP, the return is the discounted
sum of rewards up to the time step that the terminal state is reached.

We are interested in learning the value-function v of an MRP, which maps each state
s ∈ S to the expected value of the return:

v(s) = E{Gt |St = s} .

In the general case, the learner does not have access to s directly, but can only observe a
feature vector φ(s) ∈ Rn. We estimate the value function using linear function approxima-
tion, in which case the value of a state is the inner product between a weight vector θ and
a feature vector φ. In this case, the value of state s is approximated by:

v̂(s,θ) = θ>φ(s) =

n∑
i=1

θi φi(s) .

As a shorthand, we will indicate φ(St), the feature vector of the state visited at time step
t, by φt.

3. Algorithms

This section presents the two methods that we compare: conventional TD(λ) and true
online TD(λ).
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3.1 Conventional TD(λ)

The conventional TD(λ) algorithm is defined by the following update equations:

δt = Rt+1 + γθ>t φt+1 − θ>t φt (1)

et = γλet−1 + φt (2)

θt+1 = θt + αδt et (3)

for t ≥ 0, and with e−1 = 0. The scalar δt is called the TD error. The vector et is called
the eligibility-trace vector, and the parameter λ ∈ [0, 1] is called the trace-decay parameter.

TD(λ) can be very sensitive with respect to the α and λ parameters. Especially, a large
value of λ combined with a large value of α can easily cause divergence, even on simple
tasks with bounded rewards. For this reason, a variant of TD(λ) is often used that is more
robust with respect to these parameters. This variant, which assumes binary features, uses
a different trace-update equation:

et,i =

{
γλet−1,i if φi(St) = 0

1 if φi(St) = 1
for all i .

When TD(λ) uses this equation to update its elegibility-trace vector, it is said to use
replacing traces; in contrast, the default implementation based on trace update (2) is said
to use accumulating traces. In this paper, we will indicate these implemenations by ‘replace
TD(λ)’ and ‘accumulate TD(λ)’, respectively. In our experiments, we compare against both
versions.

3.2 True Online TD(λ)

The true online TD(λ) update equations are:

δt = Rt+1 + γθ>t φt+1 − θ>t φt (4)

et = γλet−1 + φt − αγλ[e>t−1φt]φt (5)

θt+1 = θt + αδt et + α[θ>t φt − θ>t−1φt][et − φt] (6)

for t ≥ 0, and with e−1 = 0. Compared to accumulate TD(λ), both the trace update and
the weight update have an additional term. We call a trace updated in this way a dutch
trace; we call the term α[θ>t φt − θ>t−1φt][et − φt] the TD-error time-step correction, or
simply the δ-correction. For λ = 0, et reduces to φt, in which case the δ-correction is 0.
Hence, for λ = 0, true online TD(λ) reduces to the regular TD(0) method.

Algorithm 1 shows pseudocode that implements true online TD(λ).1 In order to discuss
its computational cost, let n be the total number of features, and m the number of features
with a non-zero value. Then, the number of basic operations (addition and multiplication)
per time step for conventional TD(λ) is 3n + 5m. True online TD(λ) takes another 6m,
resulting in 3n + 11m operations in total.2 Hence, if sparse feature vectors are used (that

1. In the pseudocode v̂old is initialized to 0, but any (finite) value would do, because for the first update of
an episode, et is equal to φt, and hence the δ-correction is equal to zero, regardless of the value of v̂old.

2. Note that computing and adding the vector αγλ(e>φ)φ requires only 4m operations.
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is, if m << n) the computational overhead of true online TD(λ) is minimal. If non-sparse
feature vectors are used (that is, m = n) TD(λ) and true online TD(λ) require 8n and 14n,
respectively. So in this case, true online TD(λ) is roughly twice as expensive as conventional
TD(λ).

Algorithm 1 true online TD(λ)

INPUT: α, λ, γ,θinit
θ ← θinit, v̂old ← 0
Loop (over episodes):

obtain initial φ
e← 0
While terminal state has not been reached, do:

obtain next feature vector φ′ and reward R
v̂ ← θ>φ
v̂′ ← θ>φ′

δ ← R+ γ v̂′ − v̂
e← γλe+ φ− αγλ(e>φ)φ
θ ← θ + α(δ + v̂ − v̂old) e− α(v̂ − v̂old)φ
v̂old ← v̂′

φ← φ′

4. Empirical Comparisons

In this section, we compare the performance of true online TD(λ) with that of accumulate
TD(λ) and replace TD(λ). First, we compare the behaviour on two challenging examples,
then on random MRPs, and finally on a real-world data set. For the experiments on the
random MRPs and the real-world data set, all methods use the same sample sequence (and
they start from the same initial values). Hence, a lower error corresponds with a higher
learning speed.

4.1 Challenging Examples

For our first experiments, we designed two small examples that are challenging for either
accumulate TD(λ) or replace TD(λ) to check if true online TD(λ) can deal well with such
problems (see Figure 1 ). The first one, a one-state example, is challenging for accumulate
TD(λ), while the second one, a two-state example, is challenging for replace TD(λ). The
challenging part of the one-state example is that the same feature is revisited frequently
within the same episode; the challenging part of the two-state example is that the value
function cannot be represented exactly (because the two states have different values, but
are represented in the same way).

The left graph of Figure 2 shows the early learning performance on the one-state example
at λ = 1 and for different step-size values. Replace TD(λ) and true online TD(λ) do very
well on this task. For α = 1, the state-value converges after a single episode already,
resulting in an average RMS error of zero. This is not surprising, given that the return
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r = 0r = 2

=1 =1 =0

r = 0 r = 1
p=0.8 p = 0.2

=1 =0

Figure 1: Left: One-state example. Right: Two-state example. Circles indicate states;
squares are terminal states; arrows indicate state transitions (p is the transition probability).
In both examples, the state-space is represented by a single, binary feature φ.

has zero variance. However, the error for accumulate TD(λ) diverges at these settings, and
even with optimized step-size, the RMS error does not reach zero.

The right graph of Figure 2 shows the RMS error after approximate convergence for
different λ values on the two-state example. Also the RMS error for the least mean squares
(LMS) solution is shown. For accumulate TD(λ) the error is equal to the LMS solution for
λ = 1, but gets worse for smaller λ. This corresponds with the theory, which states that the
fixed point of accumulate TD(λ) equals the LMS solution for λ = 1, but is different from
the LMS solution for λ < 1 (Dayan, 1992). True online TD(λ) has the same behaviour.
Surprisingly, for replace TD(λ) the value of λ has no effect. This task illustrates the main
weakness of replace TD(λ): while it avoids the divergence issues of accumulate TD(λ), it
is an overly conservative approach. It avoids divergence by resetting a trace each time a
feature is revisited, which reduces the overall effect of a trace. In the extreme case, the
effect can be removed completely, which is what happens here.

Overall, these tasks show that while accumulate TD(λ) and replace TD(λ) each have
their weakness, true online TD(λ) does not suffer from these weaknesses. Of course, the
problems we constructed here are extreme examples. In practise, tasks will be not be so
one-sided, but they can have properties from both examples.
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Figure 2: Left: RMS error at the end of an episode, averaged over the first 10 episodes, on
the one-state example (using λ = 1). Right: RMS error after approximate convergence on
the two-state example (using α = 0.01). We considered values to be converged if the error
changed less than 1% over the last 100 time steps.
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4.2 Random MRPs

For our second series of experiments we used randomly constructed MRPs.3 We represent
a random MRP as a 3-tuple (k, b, σ), consisting of k, the number of states; b, the branching
factor (that is, the number of possible next states per transition); and σ, the standard
deviation of the reward (the expected value is drawn at random from a normal distribution
with zero mean). We compared the performance on three different MRPs: one with a small
number of states, (10, 3, 0.1), one with a larger number of states, (100, 10, 0.1), and one
with a low branching factor and no stochasticity in the reward, (100, 3, 0). We evaluated
each MRP using three different representations: one with tabular features, one with binary
features and one with non-binary, normalized features (normalized such that the length of
the feature vector is always 1). For more details on the representations, see appendix A. For
each domain/representation/method combination we performed a scan over α and λ values
to determine the best performance for each combination. As performance metric we used
the mean-squared error (MSE) with respect to the LMS solution during early learning (for
k = 10, we averaged over the first 100 time steps; for k = 100, we averaged over the first
1000 time steps). We normalized this error by dividing it by the MSE error obtained for
λ = 0 for the relevant domain/representation combination (all three TD(λ) methods reduce
to the same algorithm for λ = 0). In addition, we averaged over 50 independent runs.
For each domain/representation/method we used the same (randomly generated) sample
sequences.4

Figure 3 shows the results of the comparisons for each domain/representation combina-
tion. Because λ = 0 lies in the parameter range that is being optimized over, the normalized
error can never be higher than 1. If for a method/domain the normalized error is equal to
1, this means that setting λ higher than 0 either has no effect, or that the error gets worse.
In either case, eligibility traces are not effective for that domain/representation/method
combination.
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Figure 3: Normalized MSE error at the best parameter settings for all MRP experiments.
The error is normalized by dividing it by the MSE error obtained for λ = 0.

3. The process we used to construct these MRPs is based on the process used by Bhatnagar, Sutton,
Ghavamzadeh and Lee (2009).

4. The code for the MRP experiments is published online at: https://github.com/armahmood/totd-
rndmdp-experiments
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The results confirm the strength of true online TD(λ). The optimal performance of true
online TD(λ) is, on all domains and for all representations, at least as good as the optimal
performance of replace TD(λ) and of accumulate TD(λ). Specifically, true online TD(λ)
outperforms conventional TD(λ) on 5 of the 9 domains/representations considered. In the
next subsection, we compare the methods using real-world data.

4.3 Predicting Signals from a Myoelectric Prosthetic Arm

In this experiment, we compare the performance of true online TD(λ) and conventional
TD(λ) on a real-world data-set consisting of sensorimotor signals measured during the
human control of an electromechanical robot arm. The source of the data is a series of
manipulation tasks performed by a participant with an amputation, as presented by Pilarski
et al. (2013). In this study, an amputee participant used signals recorded from the muscles
of their residual limb to control a robot arm with multiple degrees-of-freedom (Figure 4,
left). Interactions of this kind are known as myoelectric control (c.f., Parker et al., 2006).

For consistency and comparison of results, we used the same source data and prediction
learning architecture as published in Pilarski et al. (2013). In total, two signals are pre-
dicted: grip force and motor angle signals from the robot’s hand. Specifically, the target
for the prediction is a discounted sum of each signal over time, similar to return predictions
(c.f., general value functions and nexting; Sutton et al., 2011; Modayil et al., 2014). Where
possible, we used the same implementation and code base as Pilarski et al. (2013). Data
for this experiment consisted of 58,000 time steps of recorded sensorimotor information,
sampled at 40 Hz (i.e., approximately 25 minutes of experimental data). The state space
consisted of a tile-coded representation of the robot gripper’s position, velocity, recorded
gripping force, and two muscle contraction signals from the human user. A standard imple-
mentation of tile-coding was used, with ten bins per signal, eight overlapping tilings, and
a single active bias unit. This results in a state space with 800,001 features, 9 of which
were active at any given time. Hashing was used to reduce this space down to a vector of
200,000 features that are then presented to the learning system. All signals were normalized
between 0 and 1 before being provided to the function approximation routine. The discount
factor for predictions of both force and angle was γ = 0.97, as in the results presented by
Pilarski et al. (2013). Parameter sweeps over λ and α are conducted for all three methods.
The performance metric is the mean absolute return error over all 58,000 time steps of
learning, normalized by dividing by the error for λ = 0.

Figure 4 shows the performance for the angle as well as the force predictions. The relative
performance of replace TD(λ) and accumulate TD(λ) depends on the predictive question
being asked. For predicting the robot’s grip force signal—a signal with small magnitude and
rapid changes—replace TD(λ) is better than accumulate TD(λ) at all non-zero λ values.
However, for predicting the robot’s hand actuator position, a smoothly changing signal that
varies between a range of ∼300-500, accumulate TD(λ) dominates replace TD(λ) over all
non-zero λ values. True online TD dominates both methods for all non-zero λ values on
both prediction tasks (force and angle).
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Figure 4: Left: picture of experimental setup. Middle: normalized error of the predictions
for different λ at the best α value, for the force predictions. Right: same, but for angle
predictions.

5. Conclusions

We have compared true online TD(λ) to conventional TD(λ) along three broad dimensions:
computational cost, learning speed, and ease of use. In terms of computational cost, TD(λ)
has a slight advantage. In the worst case, true online TD(λ) is twice as expensive. In the
typical case of sparse features, it is only fractionally more expensive than TD(λ). Memory
requirements are the same for both methods. In terms of learning speed, in our experiments
true online TD(λ) was usually better and never worse than TD(λ). Specifically, true online
TD(λ) substantially outperformed TD(λ) on 5 out of the 9 MRPs and in both myoelectric-
arm experiments. Finally, in terms of ease of use, we conclude that true online TD(λ) has
a clear advantage. The first difficulty with conventional TD(λ) is that typically one must
choose between its two types of traces, whereas with true online TD(λ) no such choice has
to be made. A second difficulty for accumulate TD(λ) is that its performance can be very
sensitive to the step-size parameter (e.g., see Figure 2, left), making it hard to find an
acceptable value. Overall, our results suggest that true online TD(λ) should be the first
choice when looking for an efficient, general-purpose TD method.

Appendix A. Details of MRP Experiments

Let k be the number of states in a domain. For the tabular representation each state is
represented with a unique standard-basis vector of k dimensions. The binary representation
is constructed by first assigning indices, from 1 to k, to all states. Then, the binary encoding
of the index of a state is used as a feature vector to represent that state. The length of a
feature vector is determined by the total number of states: for k = 10, the length is 4; for
k = 100, the length is 7. As an example, for k = 10 the feature vectors of states 1, 2 and
3 are (0, 0, 0, 1), (0, 0, 1, 0) and (0, 0, 1, 1), respectively. Finally, for the non-binary, normal
representation each state is mapped to a 5-dimensional feature vector, with the value of
each feature drawn from a normal distribution with zero mean and unit variance. After all
the feature values for a state are drawn, they are normalized such that the feature vector
has unit length. Once generated, the feature vectors are kept fixed for each state.
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