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Reinforcement learning (RL) methods in the form of General Value

Functions (GVFs) have been shown to accurately capture anticipatory

knowledge during human-robot interaction (Pilarski et al. 2013). GVFs

represent temporally extended predictions about signals of interest; they

can be learned in real time using standard RL methods during the use of

an assistive robotic system—e.g., a powered artificial arm or leg.

The Switching Problem: Powered artificial limb controllers use recorded

muscle signals (electromyographic recordings, or EMG) to inform their

control decisions. In more advanced prostheses there is often a disparity

between the number of available EMG recording sites on an amputee’s

body and the number of controllable functions on the prosthesis (Figure 1).

As such, an amputee can actuate only a small subset of a device’s

function at any given time. Switching between functions in a fixed or pre-

determined order can help increase the number of useable functions, but

can increase both the actuation time and cognitive effort.

Predictions regarding signals of interest were acquired through
online GVF-based reinforcement learning:

• TD-learning

• Eligibility traces

• Tile-coding function approximation

The following parameters were used in the state representation:

• Motor positions

• Motor velocities

• Motor torque (gripper)

Predicted signals of interest:

• The user’s manual prompt to initiate switching between joints

• The motion (activity) of each user-driven joint
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Abstract

State-of-the-art myoelectric arms typically have a greater number of

functions than the possible number of control signals, requiring

amputees to manually switch through a fixed list to select a desired

function. Previous studies have demonstrated that reinforcement

learning techniques, in particular General Value Functions (GVFs), can

be applied to develop temporally extended predictions about signals

related to prosthetic arm movement. Using GVFs, we can learn and

update a list of possible prosthetic arm functions, termed adaptive

switching. In this work, we demonstrate the real-time use of adaptive

switching by subjects in a simple control task with a myoelectric arm.

We also present results from subjects controlling a myoelectric arm in a

more complex task, providing evidence for the scalability of the learning

system. Our results suggest that adaptive switching can significantly

decrease the amount of time and the number of switches required for

the control of a robotic arm. We anticipate the future blending of human

and machine decision making for the shared control of a robotic arm.
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Two myoelectrically controlled robot arms were used in separate tasks

(Figure 2). The first robot arm was used by subjects to perform a simple

task, and the second arm was used to perform a more complex task. In

both tasks, electrodes were affixed to the skin of amputee and non-

amputee subjects and used to measure EMG signals from muscles on the

user’s arm. These EMG signals were mapped to two control channels: one

to actuate a robotic joint, and one to switch between joints, sequentially.

Two types of switching methods were tested:

• Adaptive switching: Joints of the arm were continually reordered in the

switching list based on their predicted likelihood of being used next

• Non-adaptive switching: Joints were presented as a fixed list; the user

must switch through joints one by one in order to select and use a joint

Simple Task: One amputee and one non-amputee subject used the

myoelectric interface in Figure 2 (left) to perform a repetitive task with the

robot for 3 minutes. This task involved rotating the shoulder joint back and

forth, waving the wrist joint, and opening and closing the hand.

Box and Blocks Task: Three non-amputee subjects used the Bento arm,

shown in Figure 2 (right), to perform a complex task that involved

repeatedly moving 5 balls from one side of a divided box to the other (5

iterations total).

Following a period of learning, adaptive switching significantly reduced the

time and number of switches required to successfully complete a task.

Figure 2. Experimental platforms

Figure 4. Mean time and number of switches per iteration of box and 

blocks task (single non-amputee subject)

Adaptive switching required fewer than 75 switches (the minimum for non-

adaptive) to complete each iteration, and approached 35 switches (the

optimal number of switches, where the user made no mistakes and was

given the correct joint each time they switched).

This work presents a concrete demonstration of adaptive switching in an

applied setting. Real-time prediction learning was used for the first time to

improve the control interface of a prosthetic device during uninterrupted

use by both amputee and non-amputee subjects.

Based on our results, we believe that adaptive switching can help

decrease the time and cognitive load required by amputees during

complex tasks and real-world functional situations.

In future work we will study the use of adaptive switching in shared-control

tasks wherein switching control itself may be further delegated to a control

system to reduce the cognitive burden on the user.

Figure 1. Example of the control disparity facing prosthesis users 	 	

Figure 3. Number of switches required per switching event during a 

3 minute trial of simple task (single amputee subject)

With adaptive switching, after an initial period of learning by the system, 

typically only one switch was required by the user.


