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Real-time Machine Learning in Rehabilitation Robotics for Adaptable Artificial Limbs

MYOELECTRIC CONTROL

Myoelectric prostheses are assistive rehabilitation devices that interpret muscle signals from an 
amputee's body to actuate a multiple-joint robotic appendage. While advances in biosensor and 
robotics technology promise to greatly improve the utility of these devices, new electromyographic  
(EMG) control methods are required to deal with the corresponding increase in available sensor 
information and actuation capability. In addition, current myoelectric control methods lack the ability 
to adapt online to changes in amputee use patterns or physical condition; controller calibration and 
improvement is largely impossible outside of a clinical setting.
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EXPERIMENTS

We assessed this control method using able-bodied subjects. While subjects engaged in a 
series of movement tasks, EMG signals were recorded using electrodes affixed to the skin 
of their arms and torso. The learning system was given interactive positive or negative 
reward feedback according to how well it transformed these EMG signals into control 
commands for an artificial limb (below). 

A simulated upper-arm prosthesis:

Right: Simulated AX-12 Smart Arm and motion 
targets. EMG signals were recorded with four BL-
AE-N pre-amplified surface electrodes via a 
National Instruments PCI-6259 data acquisition 
card at a sampling rate of 200Hz.

A physical robotic limb:  

Right: Nao T14 robot torso (Aldebaran Robotics, 
France) and EMG system. EMG signals used in 
device control and learning were obtained using a 
Bagnoli-8 (DS-B03) EMG System with four DE-3.1 
Double Differential Detection EMG sensors 
(Delsys, Boston, USA), and a National Instruments 
USB-6216 BNC analog-to-digital signal converter. 
Electrodes were sampled at 40Hz.

RESULTS & DISCUSSION

These experiments showed that the learning system was able to interpret online  
myoelectric input and human guidance to form user-specific control policies in real time. 
In addition, the system demonstrated the ability to adapt online to changes in user 
preferences and the experimental environment. Below: AX-12 motion profile results.

This type of adaptable, online learning controller represents an important step forward 
for artificial limb technology. In the long term, we expect this approach to increase the 
autonomy of amputees, while decreasing clinical costs and removing commercialization 
barriers for the next generation of truly intelligent prosthetic devices.

LEVERAGING COMPLEXITY FOR ADVANCED CONTROL

In this work, we present a real-time machine 
learning approach for generalized myoelectric 
control that promises to flexibly scale to large 
and diverse sensorimotor spaces.

This learning controller: (1) can be trained in an 
online, ongoing fashion by a human user, (2) 
does not require expert knowledge to adjust 
for different users, sensors, and actuators, and 
(3) requires no a priori data. 

ONLINE HUMAN TRAINING OF A REINFORCEMENT LEARNING CONTROL SYSTEM

Reinforcement learning (RL) is a machine learning approach for solving optimal control problems. In 
RL, a control policy is learned through repeated trial and error interactions between a learning system 
and its environment. A system aims to maximize the expected sum of a scalar feedback signal, termed 
reward, even in cases where an a priori model of the problem domain is unavailable.

Above: Algorithm and schematic diagram of actor-critic reinforcement learning applied to a two-joint 
robotic arm. At each time step, a state approximation x(s) and a scalar user-provided reward signal r
are given to the learning system. Based on this, the system updates its control policy and generates 
two continuous joint velocity actions that are given as input to the robotic arm. FOR MORE DETAIL AND REFERENCES: P.M. Pilarski, M.R. Dawson, T. Degris, F. Fahimi, J.P. Carey, and R.S. Sutton, Proc. of 

the 2011 IEEE International Conference on Rehabilitation Robotics, June 29–July 1, 2011, Zurich, Switzerland, pp. 134-140. 
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Above: machine learning approach to complex human-machine interfaces.
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