Artificial Intelligence in Medicine

Patrick M. Pilarski, Ph.D.

Canada Research Chair in Machine Intelligence for Rehabilitation Division of Physical Medicine and Rehabilitation, Dept. of Medicine

Fellow, Alberta Machine Intelligence Institute (Amii)

EDMONTON·ALBERTA·CANADA

Artificial Intelligence in Medicine thinking, moving, and perceiving

Patrick M. Pilarski, Ph.D.

Canada Research Chair in Machine Intelligence for Rehabilitation Division of Physical Medicine and Rehabilitation, Dept. of Medicine

Fellow, Alberta Machine Intelligence Institute (Amii)

EDMONTON · ALBERTA · CANADA

C.O.I. DISCLOSURE

No affiliation (financial or otherwise) with a pharmaceutical, medical device or communications organization.

Unrelated to the content or ideas noted in this talk: Senior Staff Research Scientist with DeepMind

- be able to define artificial intelligence (AI), machine learning (ML), and related concepts from the field of intelligent systems.
- be able to describe and discuss the defining characteristics of AI and ML. 2.
- be able to describe and discuss how AI has been applied in medicine 3. (specifically with regard to muscles and nerves).
- be able to estimate the impact emerging intelligent systems technology will 4. have on your own life, practice, study, or work within the next 5-10 years.
- be able to find and cite appropriate resources for future self-study on Al 5. and its application within medicine.

Learning Objectives

Direct brain-computer interfaces: study participant Jan Scheuermann feeding herself with a robotic limb (University of Pittsburgh); <u>http://www.upmc.com/media/media-kit/bci/Pages/default.aspx</u>

Direct brain-computer interfaces: *memory protheses* from the Center for Neural Engineering, Viterbi School of Engineering. <u>https://cne.usc.edu/neural-prosthesis-for-hippocampal-memory-function/</u> and <u>IEEE Trans Neural Syst Rehabil Eng.</u> 2018, 26(2):272-280.

Brain-body-machine interfaces: "Amputee Makes History with APL's Modular Prosthetic Limb" (JHU Applied Physics Laboratory); https://youtu.be/9NOncx2jU0Q

of Operability" (JHU Applied Physics Laboratory); https://youtu.be/-0srXvOQlu0

Brain-body-machine interfaces: "APL's Modular Prosthetic Limb Reaches New Levels

Brain-body-machine interfaces: "Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration" Ajiboye, A Bolu et al., *The Lancet*, Volume 389, Issue 10081, 1821-1830, 2017.

Recording array

Implanted lead

Electrode

Percutaneous lead connector

Instrumented goniometer

(École polytechnique fédérale de Lausanne); <u>https://youtu.be/0-1sdtnuqcE</u>

Brain-body-machine interfaces: "Brain-Machine Interface @ EPFL- Wheelchair"

Brain-body-machine interfaces: Baker et al., "Continuous Detection and Decoding of Dexterous Finger Flexions With Implantable MyoElectric Sensors," IEEE TNSRE 18(4):424-32, 2010.

Commercially Deployed Pattern Recognition for Prostheses

Consumer-Available BCI and BMI

Myo (Thalmic Labs)

These examples all involve machine intelligence or machine learning

Machine Intelligence

Hallmarks of Intelligence: Artificial, Machine (and Human)

Hallmarks of Intelligence: Artificial, Machine (and Human)

DECISIONS

PERCEPTION

PREDICTION

ACTION

Hallmarks of Intelligence: Artificial, Machine (and Human)

GOALS

DECISIONS

Common Misconceptions

Common Misconceptions

"**A**I"

Common Misconceptions

"Appliances"

Data, Decisions, Goals Perception, Prediction, Action

Why Machine Intelligence?

- Enhanced control over a changing and increasingly complex world.
- Anticipation of future events and outcomes.
- General tools for solving hard problems.
- "Controlling complex systems and extracting knowledge from massive amounts of data."

Examples: finance, healthcare, energy, resources, transport, information processing.

Pilarski Lab August 2016

Why Learning?

• Things are Unknown: known ends but unclear means.

- Things are Complex: scaling up is demanding or impossible.
- Things Change: systems need to adapt!

Why Learning? End known ends but unclear means. scaling up is demanding or impossible. Start

- Things are Unknown:
- Things are Complex:
- Things Change: systems need to adapt!

Why Learning?

- Things are Unknown: known ends but unclear means.
- Things are Complex: scaling up is demanding or impossible.
- Things Change: systems need to adapt!

Al and ML in Medicine

- 1. Helping to understand patient populations (generalization);
- 2. Helping to understand individual patients (personalization);
- 3. Helping choose and improve interventions (optimization):
 - by connecting patients to assistive devices;
 - by helping deploy treatment strategies.

Al and ML in Medicine

Helping to understand populations (generalization).

http://www.humanconnectomeproject.org/

Normalized distance measure:

0.1818

Subject dataset: d/ex/Pasta_NvP_pros_tr.csv Normative dataset: d/ex/Pasta_NvP_norm.csv Number of comparison dimensions: 3 Data columns: 322,2106,2125 Scale factors: 1,1,1

Al and ML in Medicine

Helping to understand individuals (personalization).

Helping choose and improve interventions (optimization).

Al and ML in Medicine

And in case you were wondering what the robots are up to these days... Atlas Robot (Boston Dynamics): <u>https://youtu.be/fRj34o4hN4I</u>

Exoskeletons: UC Berkeley spin-off suitX exoskeleton technology; https://www.youtube.com/watch?v=I3roYI3CB2Y

Looking Forward: Complex Bodies, **Multidisciplinary Care**

If a patient's body and mind are comprised of both biology and technology, how do we best treat the whole patient?

- patients may (do) consider their technology part of themselves;
- biology and technology may not be easily separable;
- biological and technical care may not be easily separable;
- normal care may soon involve experts in *muscles*, *nerves*, and bones, alongside experts in hardware, software, and data science.

Machine Intelligence

Patient Care Giver Policy Maker

Machine Intelligence

Spencer Murray

Public Relations & Communications

spencer@amii.ca +1.780.492.8448

Alberta Machine Intelligence Institute

Department of Computing Science University of Alberta 2-21 Athabasca Hall Edmonton, AB, Canada T6G 2E8

Questions

... and thank you very much!

pilarski@ualberta.ca http://www.ualberta.ca/~pilarski/