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Learning Objectives
• Be able to define and discuss machine intelligence. 

• Be able to state why machine intelligence is  
important to society. 

• Understand what machines might learn 
(representation, prediction, and control learning.) 

• Understand how machines can learn about their world. 
(three learning approaches.) 

• Understand when machines might learn. 
(online/real-time vs offline learning.)

Cheat-sheet: P.M. Pilarski, Alberta ICT Magazine, 2nd Ed., pp. 31
http://www.ualberta.ca/~pilarski/docs/papers/Pilarski-Learning-AlbertaICTMagazine2012.pdf 
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P.M. Pilarski, 2006. Nikko, Japan.



P.M. Pilarski, 2008. Dettifoss, Iceland.



P.M. Pilarski, 2007. Iguazu Falls, Argentina.



!
KEY IDEA

Data is now ubiquitous; it flows 
between connected systems at high 

volume and with great diversity. 
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Why Machine 
Intelligence?

• Enhanced control over a changing and increasingly 
complex world.  

• Anticipation of future events and outcomes. 

• General tools for solving hard problems.

• “Optimizing the control of complex systems and 
extracting knowledge from massive amounts of data.” 

• Examples: finance, healthcare, energy, resources, 
transport, information processing.
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Alternate Identities
• Artificial Intelligence:  

does it need to learn?

• Machine Learning:  
is it truly intelligent?  

• Pattern Recognition and Analysis:  
are they more than just  
deterministic processes?

DATA
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• A system that can:

Perceive and Represent its world.
Predict its world.  
Control its world. 

• “The Pursuance of future ends and the choice of means 
for their attainment, are thus the mark and criterion of the 
presence of mentality in a phenomenon” (James, 1890) 

•  Purposeful: to have, seek & achieve goals (Sutton, 2001). 

Intelligent Systems:  
One Possible Definition
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!
KEY IDEA

Intelligence revolves around 
maintaining and using knowledge 

(representation, prediction, control) 
in a purposeful way.
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Why Learning?
• Things are Unknown:  

known ends but unclear means.

• Things are Complex:  
scaling up is demanding or impossible. 

• Things Change:  
systems need to adapt!

End

Star

?
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!
KEY IDEA

Our ability to directly engineer an 
intelligent system no longer scales up 
to our goals or to the complexity of 

the digital world.
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What to Learn

• Prediction Learning: building up knowledge.  

• Control Learning: using knowledge to act. 

• Representation Learning: structuring knowledge.
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Prediction Learning

One time-step prediction.
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Prediction Learning

Temporally extended prediction.
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Prediction Learning

Temporally extended prediction.
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Control Learning

Using a learned model or values.
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Control Learning

Altering and improving a policy.
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Control Learning

Altering and improving a policy.
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Control Learning

Altering and improving a policy.
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Representation 
Learning

Simplifying the data.
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Representation 
Learning

Simplifying the data.
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Representation 
Learning

Simplifying the data.
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How to Learn

• From labeled examples: e.g., prediction learning.  

• Finding structure in the data: e.g., representation learning. 

• Through trial and error: e.g., control learning.
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From Labeled 
Examples

Prediction Learning.

Japan
Iceland
Argentina

Learning System Output ChannelsInput Channels
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Finding Structure 
in the Data

A B
Make two groupings.

Representation Learning.
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Finding Structure 
in the Data

A B C D
Make two groupings.

Representation Learning.
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Finding Structure 
in the Data

A B C D
Make two groupings.

Representation Learning.

Patrick’s MotherNot Patrick’s Mother Not Patrick’s Mother
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Through Trial and Error

Control Learning.

Location 1 Location 2 Location 3

?
Learning 
System

Action 1 Action 2 Action 3

2 2 2
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Through Trial and Error

Control Learning.
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Through Trial and Error

Control Learning.
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Extrinsic Motivation

Computational Curiosity.
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When to Learn

• In real time: online learning. 

• From past experience: offline or batch learning. 
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Offline Learning

Learning from past experience.
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Offline Learning

Learning from past experience.
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Offline Learning

Learning from past experience.
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Offline Learning

Learning from past experience.
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Real-time Learning

Learning from ongoing experience.
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Real-time Learning

Learning from ongoing experience.
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Real-time Learning

Learning from ongoing experience.
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!
KEY IDEA

Many possible (compatible and 
interchangeable) ways for a machine 

to approach the acquisition and 
utilization of knowledge.
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Learning Summary
• Be able to define and discuss machine intelligence, 

and be able to state why machine intelligence is 
important to society. 

• Understand what machines might learn  
(representation, prediction, and control learning.) 

• Understand how machines can learn about their world.  
(three learning approaches.) 

• Understand when machines might learn.  
(online/real-time vs offline learning.) 

• Imagine the promise and perils of intelligent machines.

Cheat-sheet: P.M. Pilarski, Alberta ICT Magazine, 2nd Ed., pp. 31
http://www.ualberta.ca/~pilarski/docs/papers/Pilarski-Learning-AlbertaICTMagazine2012.pdf 
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The field of AI needs poetry. 
And it needs perception.

c.f., the geopoetics  
of Don McKay



e.g., TFAATJ on tour in 
London with Kim Solez

e.g., Dennis Lee and  
Christopher Dewdney



?
QUESTIONS

pilarski@ualberta.ca 

http://www.ualberta.ca/~pilarski/ 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