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Abstract

Powered prosthetic arms with numerous controllable functions (i.e., grip pat-

terns or movable joints) can be challenging to operate. Gated control—

a common control method for myoelectric arms and other human-machine

interfaces—allows users to select a function by switching through a static list

of possible functions. However, switching between many controllable functions

often entails significant time and cognitive effort on the part of the user when

performing tasks. One way to decrease the number of switching interactions

required of a user is to shift greater autonomy to the prosthetic device, thereby

sharing the burden of control between the human and the machine.

Previous work has demonstrated that reinforcement learning (RL), and

specifically general value functions (GVFs), has the potential to reduce the

time and switching cost of gated control methods. In the current work, we

extend previous studies by advancing an RL method termed adaptive switching

for use during real time control of a prosthetic arm. Adaptive switching uses

contextual factors to build up predictions about the use of functions during a

task. Based on these predictions, adaptive switching will continually optimize

and change the order in which functions are presented to the user during

switching. We also combine adaptive switching with another machine learning

control method, termed autonomous switching, to further decrease the number

of manual switching interactions required of a user. Autonomous switching

uses predictions, learned in real time through the use of GVFs, to switch

automatically between functions for the user.

Over the course of several studies, we collected results from subjects with

and without amputations, performing simple and more challenging tasks with

a myoelectric robot arm. As a first contribution of this thesis, we present
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results from work on adaptive switching, and show that it leads to a reduc-

tion in the total switching cost (both in terms of time and the total number

of switches), an effect that is especially pronounced for experienced myoelec-

tric arm users. For our second and third contributions, we describe our au-

tonomous switching approach and demonstrate that it is able to both learn

and subsequently unlearn to switch autonomously during ongoing use, a key

requirement for maintaining human-centered shared control. We found that al-

though autonomous switching decreases the number of user-initiated switches

compared to conventional control, some work remains to be done to improve

accuracy of predictions leading to a switch. We also show that the addition of

feedback to the user can significantly improve the performance of autonomous

switching.

This work promises to help improve the gated control method for pros-

thetic arms, as well as other domains involving human-machine interaction—

in particular, assistive or rehabilitative devices that require switching between

different modes of operation such as exoskeletons and powered orthotics.
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Chapter 1

Introduction

1.1 Problem

New devices used in human-machine interaction are designed with elegant,

efficient parts that allow them to be multi-purpose—they perform a broad

range of functions to accomplish their users’ many goals. In particular, modern

myoelectric artificial arms (arms that can be actuated via electromyography,

or EMG signals) are highly versatile (Scheme and Englehart, 2011). The most

recent generation of commercial myoelectric arms are capable of upwards of

20 different grip patterns (unique hand positions) and joint motions.

Despite their increasingly diverse set of functions, these arms are often

considered by persons with limb amputations to be challenging to operate,

largely because of the non-intuitive solutions in place to control so many dif-

ferent available motions (Scheme and Englehart, 2011; Williams, 2011; Resnik

et al., 2012). The fact that the controllable functions of a myoelectric arm

largely outnumber available muscle control sites has led to a commonly used

control interface called switched, or gated control. Using this control method,

prosthetic arm functions (which we define as either grip patterns or individual

joint motions) are presented to the user as an optimized list with an order that

never changes. The individual can then switch through this static list using

a mechanical toggle, muscle co-contraction, a force-sensitive resistor, or other

similar methods, until they select their desired function; the selected function

can then be controlled using normal muscle contractions (as in the traditional

direct control approach) (Scheme and Englehart, 2011; Peerdeman et al., 2011;
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Figure 1.1: Example of function switching as used to control an assistive de-
vice. One problem for human-machine interaction occurs when a machine’s
controllable dimensions outnumber the control channels available to its human
user. Here, the user has two available channels to control four possible joints
of a robot limb. Gated control allows the user to switch their control between
joints, one by one.

Micera et al., 2010; Parker et al., 2006). An example of this control scheme is

illustrated in Fig. 1.1.

A consequence of using this type of control is that amputees can select and

control only one function at a time, which makes the use of the switched control

interface cognitively demanding and time intensive (Scheme and Englehart,

2011; Williams, 2011). For example, to perform a simple action like picking

up a cup of coffee, a myoelectric arm user would be required to perform a

series of sequential actions, such as: switch to the gripper function, open the

gripper, position the gripper around the cup, close the gripper, then switch

to the elbow function, bend the elbow to bring the cup to the mouth, extend

the elbow to bring the cup back to the table, then switch to hand, and open

the gripper to release the cup. To make this type of control more efficient,

the number of controllable functions on a prosthetic arm is often deliberately

reduced to only a few clinically selected options that are customized to the

anticipated needs of the user.

These limitations have been a driving force for the development of more
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advanced control paradigms such as pattern recognition, which increase the

number of degrees of freedom that can be intuitively controlled, but are typi-

cally still limited to gated control (Scheme and Englehart, 2011; Micera et al.,

2010; Castellini et al., 2014). However, as device functionality increases and

control becomes more challenging (Resnik et al., 2012), an alternate solution

may be for prostheses to begin to assume more autonomy in interpreting and

executing a user’s intended movements (Castellini et al., 2014).

Specifically with regard to switched myoelectric control interfaces, previous

work done in our research group has demonstrated that reinforcement learning

(RL) techniques can be successfully applied to increase the decision making

capacity and autonomy of prosthetic control solutions (Pilarski et al., 2013a,

2012). Our demonstrations have all leveraged real-time nexting, a computa-

tional approach so-named because it allows a system to build up and maintain

predictions about what will happen next (Modayil et al., 2012b; White, 2015).

Prior work on increasing the number of accessible prosthetic functions

demonstrated how predictions about sensorimotor signals pertaining to pros-

thetic joint movements could be learned and maintained using a technique

from reinforcement learning known as General Value Functions (GVFs) (Sut-

ton et al., 2011). GVFs are temporally extended predictions about signals of

interest, and have been applied to build up real-time anticipatory knowledge

in relation to human-machine interactions (Pilarski et al., 2012, 2013a). It was

shown in experiments that GVFs may provide a way to streamline control in-

terfaces with robotic arms (Pilarski et al., 2012, 2013a,b). In particular, it was

demonstrated that the use of GVFs to predict which joint of a robotic arm a

user will actuate next could lead to an adaptive or situation-specific switching

list (Pilarski et al., 2012). A natural extension of that work would be to apply

predictions to actual human interaction with prosthetic limbs with the intent

of streamlining control. Applying GVF predictions to human-machine inter-

action is consistent with the idea that the human brain makes forward motor

predictions of its own, using knowledge of context and immediate sensory input

(Sutton and Barto, 1990; Wolpert et al., 2001; Redish, 2013; Linden, 2003).
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1.2 Objectives

In this thesis, we have extended previous work by developing new prediction-

based algorithms for the control of assistive devices like artificial limbs. In

particular, we explore the use of RL methods, and specifically GVFs, to assist

in human decision making during the control of a human-robot interface—a

myoelectric arm. We suggest that by acquiring and utilizing knowledge about a

user’s control-related decisions, control systems and human-machine interfaces

could begin to take on a more autonomous role, which could reduce the burden

on the user to consciously and independently control every individual joint

motion of the prosthesis. Knowledge about a user and their robotic system

can take the form of learned predictions about the interactions between the

human and their device.

Our main objective in this work is to move toward a more autonomous

robot arm system—one that can be applied to improve control and reduce

the cognitive burden for amputees—through the use of RL techniques. A

secondary goal is to develop algorithms that can be used in a more general

way in other switching-based control systems.

1.3 Contributions

This work has several main contributions toward more autonomous methods

for control of myoelectric arms: an implementation of adaptive switching in

real time, the learning and unlearning of switch predictions, and the develop-

ment of a new algorithm called autonomous switching. These contributions

are described, in brief, below.

1.3.1 Adaptive Switching

A first contribution of this work is adaptive switching. The adaptive switching

algorithm optimizes a list of the controllable joints of a robotic arm. Joints are

presented to the user in a switching order that is based on predictions about

their use. A high prediction of future shoulder motion relative to other joints
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results in the shoulder joint being presented first in the switching list; thus, if

the user were to initiate a switch at the given moment, their control channel

would shift to the shoulder. This re-ordering is a dynamic process that occurs

continuously and in real time as long as the arm is in use. The algorithm

is built on the hypothesis that a contextually ordered list will result in fewer

switches, saving the user task time.

In prior work, our research group demonstrated that offline implementa-

tions of an adaptive switching approach could potentially reduce the total task

time and the total transition time between joints (Pilarski et al., 2012). In this

thesis, we build on this work by, for the first time, bringing adaptive switching

into practice and demonstrating its utility during real-time use by multiple

able-bodied (non-amputee) and amputee subjects.

1.3.2 Learning and Unlearning Switch Predictions

Another important contribution of this thesis is giving a system the ability to

unlearn previously learned predictions. Giving a learning system the capacity

to both learn and unlearn a set of predictions is essential for human-centred

shared control settings, in which both the human and machine take part in

decision making to accomplish a goal. Both humans and autonomous learning

systems are imperfect—occasionally, they may make mistakes in the way they

form predictions about future events, and they may take actions based on

faulty predictions. The system’s predictions about signals of interest may

be incorrect because the user accidentally reinforced an incorrect action, or

because there was an unforeseen change in the environment or goal. Because

predictions can be wrong, it is imperative the human retains the ability to

correct the autonomous agent: effectively an implicit ‘undo’ action that results

in a decay in the prediction signal. We programmed our learning system, the

robot arm, with the ability to learn not just what a user will switch to, but

also when a user will switch. In addition, we contribute the ability to unlearn

these predictions when tasks or user intent changes.
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1.3.3 Autonomous Switching

The autonomous switching algorithm, our third contribution, was developed

as an extension to adaptive switching, and designed to be used in combination

with the adaptive switching algorithm. Despite the clear advantages to having

a continuously optimized list of joints (i.e., from an adaptive list), adaptive

switching still necessitates at least a single switch each time the user decides

to redirect control to another joint. To further reduce the number of essential

interactions between a user and their device, an alternate solution is needed.

Autonomous switching provides the means to reduce switching interactions

by initiating some switches for the user. Autonomous switching answers the

question “when does a user intend to switch to a different arm function?” by

building up predictions; then, after reaching a threshold of confidence in these

predictions, the robot arm begins to take over the switching action for the

user.

1.4 Chapter Summary

In writing this thesis, I have attempted to use an informal tone to ensure

the work is understandable to students and researchers outside the computing

sciences. As a result, some precision may be lost in the interest of more

illustrative examples and terminology. However, all equations and parameters

in this thesis are presented precisely and in full.

In the next chapter, I will discuss some essential background topics rele-

vant to this thesis. Chapter 2 includes information on prosthetic arms, current

control approaches, and their associated challenges. I will also define rein-

forcement learning (RL), the specific algorithms used in this work, and discuss

previous studies on machine autonomy in human-machine interfaces.

Chapter 3 introduces adaptive switching during human interaction with

a prosthetic arm. I will discuss the experiments used to test our adaptive

switching algorithm and the results of these experiments.

In Chapter 4, I will discuss experiments with a robotic arm interface in

which we make predictions about when an individual will switch functions.
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Chapter 5 builds on the predictions from the previous chapter. In this

chapter, I will describe the development of the autonomous switching algo-

rithm, including the evolution of the method of unlearning previously learned

predictions.

Chapter 6 extends the previous chapter with new results from autonomous

switching on a more challenging task. Chapter 7 is a discussion of the work

thus far. I examine its implications and limitations, as well as future directions

and potential applications. The concluding chapter includes final remarks and

a summary of this work.
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Chapter 2

Background

There is a projected growing number of individuals with amputations in the

United States. Ziegler-Graham et al. (2008) estimate that in 2005, approxi-

mately 41,000 people were living with a major (excluding finger) upper-limb

amputation (Ziegler-Graham et al., 2008). Not only can the loss of a limb

result in varying degrees of physical disability, but it can also cause emotional

distress and, in many cases, significant loss of productivity (Ma et al., 2014;

Sheehan and Gondo, 2014). The loss of a hand also signifies the loss of an

essential tool, both for communication and grasping (Castellini et al., 2014;

Zuo and Olson, 2014). The use of novel artificial hand technology can help to

mitigate this loss, providing upper-limb amputees with functional alternatives

to conventional prosthetic arms.

2.1 Prosthetic Arms

2.1.1 Types of Arms

The primary way to re-establish some functionality post-amputation is through

use of an artificial limb (Carlsen et al., 2014). There exist three main classes of

prosthetic arms: body-powered, passive, and myoelectric (Biddiss and Chau,

2007). Body-powered prostheses consist of cables, typically harnessed to the

intact side. The motion of the shoulder blades causes tension on the cable,

and the resultant excursion of the cable through a housing system enables the

wearer to open and close the terminal device (usually a gripper or artificial

hand). Passive prostheses are neither body-powered nor externally powered.
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Although they are primarily used as cosmetic alternatives to powered pros-

theses, they can also be used to passively grip objects. Myoelectric prostheses

have movable joints that are electrically driven by EMG signals and are the

focus of this work.

Non-invasive EMG prosthesis control typically consists of electrodes affixed

to the surface of a user’s skin over muscle sites (Scheme and Englehart, 2011).

Electrodes measure the electrical potential of active muscles, with signals pro-

portional to the force exerted by muscle contraction. The recorded signals

from each EMG channel are then amplified and processed to produce a set of

signals that can be used reliably for control.

2.1.2 Control Challenges

Myoelectric arms have become increasingly powerful devices with a vast num-

ber of functions (i.e., preset motions and hand positions) to choose from. The

i-limb revolution (Touch Bionics, Livingston, UK) is an example of a state-

of-the-art commercial arm and comes with up to 36 pre-programmed grip

patterns such as the “handshake” grip and the “index point” grip. Different

selectable grip patterns allow the user to perform anthropomorphic grip ac-

tions that are functionally similar to some human hand motions. But how

does an individual control so many functions at one time?

Gated Control

With only a limited number of myoelectric control sites (e.g., in the worst case

scenario, there may be only two or three usable control sites), gated control

is a solution which could allow the amputee to switch through an exhaus-

tive list of functions. However, in practical terms, switching through more

than three or four possible functions is both challenging and time-consuming.

Thus, gated control in practice requires the clinician to reduce the number of

functions available to the user to a more manageable list, such that only the

functions that are used most often are accessible. While this solution enables

the amputee to control their myoelectric arm, it is by no means efficient, as

it trades function for control and is considered by many to be non-intuitive

9



(Scheme and Englehart, 2011).

Pattern Recognition

Other potential solutions exist for controlling a greater number of functions of

a myoelectric arm. Pattern recognition techniques have been used to enable

more intuitive myoelectric control by extracting key features from multiple

EMG sites and classifying these according to desired control actions (Scheme

and Englehart, 2011; Sensinger et al., 2009).

However, pattern recognition algorithms are also limited by the fact that

they must be trained offline from previously recorded signals. Classification is

typically accomplished in-clinic before being deployed for regular use. There

are a number of factors that can contribute to a degradation in signal recog-

nition over time: muscle fatigue, skin conductivity from sweating, a change in

the position of the electrodes within the arm socket, or differences in contrac-

tion strength compared with training samples (Castellini et al., 2014). These

changes ultimately cause frustration for the user, as their movement intentions

no longer translate into repeatable device motions. Therefore, when using the

pattern recognition approach, myoelectric arms must periodically be recali-

brated (Scheme and Englehart, 2011). However, recent advances (e.g., the

Complete Control System, Coapt LLC) allow the patient to repeatedly retrain

their myoelectric device outside of the clinic.

Targeted Muscle Reinnervation

Targeted muscle reinnervation (TMR) surgery is a surgical intervention that

increases the number of EMG sites available for control (Kuiken et al., 2004;

Carlsen et al., 2014; Zuo and Olson, 2014). Patients who undergo TMR surgery

have the residual nerves from the site of amputation rewired and connected to

remaining non-functional muscle units in the chest or residual limb. The result

is that when the amputee thinks about moving the hand or the forearm, the

reinnervated muscles contract, and this signal is mapped to the corresponding

motion of the prosthesis. This procedure ultimately provides a greater number

of viable muscle control sites, and facilitates a more intuitive mapping to
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the functions of a myoelectric arm. Control signals originally intended to

move the hand can be redirected to physiologically equivalent functions on a

myoelectric arm, and used, for example, to open or close a gripper. Using

direct EMG control from these new signal sources also makes it possible for

amputees to control multiple degrees of freedom simultaneously. Some sensory

reinnervation may also occur after TMR surgery; some amputees experience

sensations in their missing limb when touched on the reinnervated area of

their chest or residual limb. This has led to the development of surgery, called

targeted sensory reinnervation, to remap sensory nerve fibers in addition to

motor nerves (Zuo and Olson, 2014). The reinnervated sites can then be used

to provide feedback signals (e.g., relating to touch or grip strength) through

the overlying skin (Schofield et al., 2014).

2.2 Reinforcement Learning

Despite the advancements in the number and type of interventions related

to myoelectric control in recent years, the rate of prosthesis abandonment is

relatively high. In the last 25 years, the mean rate of rejection of electric

prostheses across 18 studies is cited to be 23% for adult wearers (Biddiss and

Chau, 2007). A significant number of individuals also tend to use their active

prostheses as passive devices.

The reasons for rejection of myoelectric arms have been studied via ques-

tionnaires and can be grouped in three separate categories: lack of intuitive

control, lack of function, and lack of feedback (Peerdeman et al., 2011). Re-

inforcement learning techniques may provide us with solutions for making

myoelectric control more intuitive (Pilarski et al., 2013a). In general terms,

the idea behind RL is that of a learning system which aims to maximize a

signal from the environment, called reward, by adapting its behaviour.

A thorough introduction of RL is provided by Sutton and Barto (1998).

Reinforcement learning techniques allow an agent (a learner) to learn about

a policy, π (a way of behaving, or choosing actions A given a state S ) by

interacting with the environment to accomplish a goal. Fig. 2.1 illustrates the
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conventional elements of the RL framework and how they relate to one another.

A reward, R, represents the immediate desirability of the current state, whereas

a value represents the expected accumulated reward over the long term when

starting from the current state. While a small, immediate reward might signify

a positive state to the agent, in the long run, the value of that state may

be less than the value of another state, making it less desirable overall. A

reward function maps states (or state-action pairs) from the environment to

scalar rewards when following a given policy. Similarly, a value function (vπ)

maps states (or state-action pairs) to the expected sum of future reward when

following a given policy. In this way, value functions are predictions of future

reward. Computational RL is not unlike RL as it is known in biology and

psychology, where positive reward is related to pleasure and negative reward

to pain.

The discounted sum of future reward (the return, G) is expressed in (1).

Here, γ represents the discount factor. A discount factor of less than 1 signifies

a smaller contribution of reward at each successive time step.

Gt =
∞∑
k=0

γkRt+k+1 (1)

Following this, vπ can be defined in terms of G. In (2), we show the

expectation, E, of the return when following a given policy π starting from

state s.

vπ(s) = Eπ[Gt|St = s] = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]
(2)

For all experiments described in this thesis, we use a type of RL value

function, termed a General Value Function (GVF), described in section 2.2.2.

2.2.1 Function Approximation

With only a limited number of states and actions, value functions can easily

be computed. However, in practical settings, the state of the world is infinitely

large, and not all states will be visited by an agent. As memory requirements

grow with larger state and action spaces, there is a need to generalize from
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Figure 2.1: Interactions in the RL framework. Based on the current state, the
agent takes an action, then receives a reward on the next time step. Figure
reproduced from Sutton and Barto (1998).

a small subset of experience. Function approximation techniques can be used

to generalize to previously unseen states by approximating the true function

(i.e., a value function or policy) using a select number of known samples.

In this work, we use a linear function approximation technique called tile

coding (Sutton and Barto, 1998). Mechanistically, tile coding is a function

that takes as an input the state of the world (i.e., observations of interest) and

returns a vector of features. The feature vector (denoted x(s)), in combination

with a vector of weights (denoted w), which represents the learned expectation

of reward, forms the inner product that is used to approximate the value

function (vπ(s)), as in (3). For our work, the feature vector is a binary array,

typically sparse, which represents the current state.

vπ(s) ≈ w>x(s) (3)

Tile Coding

Tile coding partitions a continuous state space into a number of discrete units,

or tiles, which form the feature vector. For example, when representing the

velocity of a car using tile coding, it might be appropriate to divide the range of

possible speeds (i.e., from 0 to 200 kph) into 20 tiles, where each tile uniquely

13



represents a range of 10 kph. Accordingly, if the car is travelling at 45 kph,

its current speed falls within the tile which represents the 40-50 kph range.

If other types of inputs are also of interest (i.e., distance to destination and

amount of gasoline in the tank), these can each be tiled as well, and treated as

additional state dimensions. After tile coding, the three inputs suggested here

(speed, distance, and amount of gasoline) would form a 3-dimensional array of

tiles; however, the dimensions are not limited to three, and additional inputs

could increase the number of array dimensions. In a given array, a single tile is

considered active, representing the current state. This active tile has a value

of 1, and uniquely determines the state at the desired level of resolution; all

other (non-active) tiles have a value of 0. An illustration of tile coding with

two position inputs (two dimensions) can be seen in Fig. 2.2a.

A representation like the one described above with a single active tile is

called a tiling. Multiple tilings of varying granularity can be used, overlapping

each other, but with slightly offset ranges to capture a finer or more general

representation of the state. An example of tile coding using multiple tilings

can be seen in Fig. 2.2b.

In this work, we sometimes make use of a 5-way tile coding function (also

used in Pilarski et al. (2012)). This type of tile coding function provides a

means of representing the state when there is a large number of features. The

difference between classical tile coding function approximation and 5-way tile

coding function approximation is illustrated in the following example.

Suppose there are 8 signals that describe a robot arm (four position signals

and four velocity signals). A classical tile coding function would result in an

8-dimensional tiling with one active tile. In this case, each of the 8 arm signals

would form one axis of the array (Fig. 2.3a). In contrast, 5-way tile coding

would result in four separate arrays, each with five dimensions, where each

array contains one active tile. A tiling can be formed by stacking these four

arrays. Instead of forming one 8-dimensional array, 5-way tile coding forms

multiple 5-dimensional (5-way) arrays. In each 5-dimensional array, four of

the dimensions are the same (i.e., the four position signals), and the fifth

dimension is different between each array (i.e., one of the remaining velocity
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signals). In Fig. 2.3b, the dimensions that remain constant are shown in blue,

and the dimension that changes is shown in red. This type of representation

places greater emphasis on the four fixed dimensions. In this example, and

in many of our experiments, we chose to keep the position signals as fixed

dimensions in the tile coder because changes in the robot arm’s position were

particularly important for our specific tasks. An important consequence of

5-way tile coding is a reduction in the size of the array—in some instances, by

multiple orders of magnitude.

2.2.2 General Value Functions

Like conventional RL value functions, GVFs represent temporally extended

predictions—they represent the weighted summation of some observable sig-

nal over a window of future experience. While conventional value functions

approximate the return observed by an RL system, GVFs can be used to build

up predictions about any arbitrary signal of interest (Sutton et al., 2011). In

this way, GVF predictions may be considered answers to different types of

questions, such as “when will a myoelectric arm user move the elbow joint?”

GVFs are a form of nexting, an RL approach that enables an agent to

learn about and maintain predictions about what will happen next (Modayil

et al., 2012b). GVFs enable us to build up predictions about sensorimotor

signals at multiple different time scales. Modayil et al. (2012a) have demon-

strated that thousands of temporally extended predictions about future values

of sensors can be made in parallel by a robot interacting with its environment.

Furthermore, the computational requirements of these predictions scale lin-

early, making nexting a practical tool for learning in real time. Nexting has

potentially useful applications in many robotics settings because, just like hu-

mans and other animals use sensory cues in their environment to help inform

their next actions, nexting gives an autonomous agent a continuous stream of

predictive knowledge to help inform their own actions.
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Figure 2.2: An example of tile coding in two dimensions. (a) A tiling with
a single active tile. The axes represent two different position signals of a
continuous state space; (b) three overlapping tilings, each with a slight offset
from the origin. Each tiling contains a single active tile.
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Figure 2.3: Representing 8 features using two tile coding functions. (a) Clas-
sical tile coding with 8 features; each feature forms one axis of a multi-
dimensional array. The resulting 8-dimensional array has a single active tile.
(b) 5-way tile coding with 8 features. The four position features make up four
axes of the array, and one of four velocity signals makes up the fifth axis. Each
of the resulting 5-dimensional arrays contains a single active tile.

17



Definition

In GVFs, the signal of interest is called the cumulant, Z, and is used in place of

reward, R, in conventional value functions. The cumulant is the signal we are

predicting—in other words, it defines the type of question we wish to answer

using GVFs. If the question is “when will a myoelectric arm user move the

elbow joint?” then the cumulant might be a binary signal that is active only

while the elbow joint is in motion; other related parameters can be adjusted

to establish the time scale of interest. With experience, a prediction of this

type of signal should increase prior to elbow movement. In this way, GVFs

can be a powerful tool for predicting a variety of signals. Here, the return, G,

can be computed as shown in (4).

Gt =
∞∑
k=0

γkZt+k+1 (4)

In our experiments, the feature vector, x(s) is an approximation of the

current observed state. The weight vector, w, represents the learned expecta-

tion of the cumulant. GVF predictions of the signal of interest are computed

from a linear combination of the feature vector and the learned weights, as

previously seen in (3). The weight vector can be learned using traditional RL

algorithms like TD(λ), or newer algorithms like GTD(λ)—both of these are

described in more detail below.

2.3 Learning Algorithms

In this section we describe the temporal-difference (TD) learning algorithms

used in the following chapters. TD learning is fundamental to reinforcement

learning. Updates to the weight vector are made through experience with

the environment, using the difference between the future estimated value of

a signal and the last sampled value, plus the reward. As such, TD learning

updates the prediction error from an estimate at each state transition, as

opposed to waiting for the true value of the signal at some terminal state.

Two TD learning algorithms are used in this work. The TD(λ) algorithm was
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the update method used in all adaptive switching work, and gradient TD(λ),

or GTD(λ), was used in similar fashion in the autonomous switching work.

Both algorithms are described in detail below.

2.3.1 TD(λ)

Algorithm

TD(λ) is a TD learning algorithm that is commonly used for prediction esti-

mation. In TD(λ), a temporal difference error signal, denoted δ, is calculated

in (5) from the difference between the prediction for the current state and the

prediction for the future—i.e., the cumulant plus the prediction for the next

observed state as discounted by γ. Here, w denotes the weight vector and

x(s) denotes the feature vector, which are used to compute the predictions at

St and St+1. The discount factor, γ, affects the weight of future signals about

which we are making a prediction. Setting γ to 1 is equivalent to making a

prediction about all future experience, whereas setting γ to 0 is equivalent to

making a prediction about the next timestep.

δt = Zt+1 + γw>t x(St+1)−w>t x(St) (5)

According to standard practice, replacing eligibility traces, e, were com-

puted as in (6), using a trace decay parameter λ, to specify the eligibility

of features for weight updates. Eligibility traces provide a way of assigning

credit to previous states for reward earned in the current state. The trace

decay parameter takes on a value between 0 and 1; it defines the way credit

is received by those states. Higher values of λ equate to longer lasting traces.

For a full discussion of eligibility traces and their utility, please refer to Sutton

and Barto (1998). The eligibility traces are computed by adding the previous

traces, discounted by both γ and λ, to the feature vector x. We used replacing

traces in all our experiments, thereby capping the value of each trace at 1.

The weight vector is updated in (7) by adding the previous timestep’s weight

vector to the product of δ, a scalar learning rate α, and e.
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et = min(et−1γλ+ x(St), 1) (6)

wt+1 = wt + αδtet (7)

Together, these equations (5-7) represent the steps involved in learning

GVFs with TD(λ) learning.

2.3.2 GTD(λ)

Off-Policy Learning

A policy maps observed states to actions. Off-policy algorithms use informa-

tion about a policy that is being followed and acted on (the behaviour policy)

to learn about a similar but different policy (the target policy). This is par-

ticularly useful in situations when a stream of data includes some, but not all

the experience needed for full exploration. In off-policy learning, some samples

of experience from the behaviour policy must overlap with samples from the

target policy.

TD(λ) has been shown to diverge under certain conditions; specifically,

when combined with off-policy estimates and most forms of function approx-

imation (Sutton and Barto, 1998; Baird, 1995). For autonomous switching,

we use tile coding function approximation and off-policy learning, and there-

fore a different algorithm is needed. GTD(λ) is stable for off-policy learning

applications.

Algorithm

In GTD(λ), the temporal difference error signal δ is computed as in (5). How-

ever, the equations representing the eligibility traces and the weight vector

differ from those used in the standard TD(λ) algorithm shown above. To

compare the similarity of the behaviour and target policies used in action se-

lection, an importance sampling ratio, ρ, is formed. The importance sampling

ratio is computed in (8) from the likelihood of choosing action At from state St

under the target policy, π, divided by the same likelihood under the behaviour
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policy, µ. Because these two policies can differ from each other in off-policy

learning, ρ acts as a correction factor.

ρt =
π(St, At)

µ(St, At)
(8)

Replacing eligibility traces e are multiplied by the likelihood ratio in (9).

Instead of only one weight vector, w, GTD(λ) uses a second weight vector, h,

to correct the gradient of the learning update and prevent divergence during

off-policy function approximation (Maei, 2011). The original weight vector is

now formed partly using the secondary weight vector, as seen in (10). In the

equation for the second weight vector (11), β is a step size parameter for the

update of h.

et = min(ρt(et−1γλ+ x(St)), 1) (9)

wt+1 = wt + α(δtet − γ(1− λ)x(St+1)e
>
t ht) (10)

ht+1 = ht + β(δtet − (h>t x(St))x(St)) (11)

2.4 Autonomy

Autonomy in both switched and non-switched myoelectric control settings is a

topic of current interest, with a number of compelling approaches ranging from

enhanced pattern recognition to unsupervised control adaptation, autonomous

grasp pre-shaping, and intelligent object targeting (as reviewed by Castellini

et al., 2014).

To highlight a specific example, Cipriani et al. (2008) describe shared con-

trol between subjects and an anthropomorphic myoelectric hand. In shared

control situations, the human and robotic device each make decisions about or

act on some aspect of a task. In the cited work, the prosthetic hand used su-

pervised training and pattern classification to determine the appropriate grasp

pattern; then, upon recognition of learned EMG patterns, initiated grasping
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actions. The results of this study—that autonomous hand pre-shaping can

be successfully used to grasp various objects—suggest that increased device

autonomy, in the form of shared control, could present a solution to some of

the challenges we face with current switched myoelectric control methods. An-

other important conclusion from this research was that the more interactions

required of a user in terms of accessing the shared control functions of their

myoelectric hand led to reduced device acceptability overall (Cipriani et al.,

2008).

2.4.1 Trust

In shared control tasks, the human and autonomous device are both active

participants in accomplishing an overarching goal. As a result, trust is an

essential component of shared control. If trust is lacking, the user may become

increasingly frustrated by his or her shared performance of the task. When

a robot’s autonomy consistently acts inappropriately in a given situation, the

operator will begin to over-monitor the robot’s actions (Goodrich et al., 2001),

and in consequence, the operator’s ability to perform multiple tasks is hindered

and his or her cognitive load increased. If the autonomy is considered too

unreliable, the user may simply stop using the device.

2.5 Experimental Setup

Each of the four main chapters in this work (Chapters 3-6) use a similar

experimental setup. Here, we describe the setup used in experiments that

involved EMG control, introduce the robotic arm platforms used in this work,

and provide a brief overview of the types of tasks given to subjects.

2.5.1 EMG Setup

In all of our experiments involving EMG, the motion of the prosthesis was

designed to be velocity-controlled in proportion to the strength of myoelectric

signals. We used double-differential Delsys sensors connected to an 8-channel

Bagnoli EMG system (Delsys, Inc.). Raw EMG signals were acquired at a
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sampling rate of 1 kHz and digitized using a 16-bit DAQ (National Instru-

ments).

Electrodes were affixed to subjects’ skin without gel, using a specialized ad-

hesive and touch fastener bands. The placement of electrodes differed slightly

between able-bodied subjects (those without amputations) and amputee sub-

jects. All subjects provided written informed consent to participate, and trials

were approved by the human research ethics board at the University of Al-

berta.

Able-Bodied Electrode Placement

In a typical control scheme for able-bodied subjects, one pair of electrodes was

placed over the wrist extensor muscle group on one arm. Activation of this

control channel (i.e., contracting the muscle) created a signal for switching

between the joints of the myoelectric arm, allowing the individual to select a

new joint for control. On the other arm, two pairs of electrodes were placed on

antagonistic muscle sites (e.g., biceps and triceps or wrist extensors and wrist

flexors) for controlling the movement of the prosthesis; one channel was used

to move the selected joint in one direction, and the opposite channel was for

movement in the opposite direction.

Amputee Electrode Placement

In amputee subjects, one pair of electrodes was placed over the wrist extensor

muscle group on the intact arm for switching between joints of the myoelectric

arm. The two pairs of electrodes for joint movement were affixed to the resid-

ual limb over the biceps and the triceps. One of our amputee subjects had

undergone TMR surgery. In this case, the electrodes used in joint movement

were placed on the pectoral muscles.

2.5.2 Experimental Robotic Arms

The ExArm, the Myoelectric Training Tool, and the Bento Arm were the

robotic arms used in this thesis, and represent successive generations of exper-

imental robot arms.
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The ExArm

The ExArm is a wearable, myoelectrically controlled robot arm with four con-

trollable actuators. The shoulder joint could be controlled to move the limb

left and right, and the elbow joint could be controlled in an up and down mo-

tion. The lower portion of the arm could also flex inward and outward as in

wrist joint movement, and the arm terminated in a simple gripping actuator.

The Myoelectric Training Tool

We used a custom-built research platform known as the Myoelectric Training

Tool (MTT) in some of our experiments (Dawson et al., 2012). The MTT

includes an AX-18 smart robotic arm (Crustcrawler Inc.) that has five degrees

of freedom and can be controlled via EMG signals by both amputees and able-

bodied subjects. In addition, it can be used as a training tool for amputees

preparing to use a myoelectrically controlled prosthetic arm, as it was designed

to be functionally similar to commercial prostheses. The MTT operated within

a table-top task with a workspace centred on the robot’s axis of humeral

rotation.

The Bento Arm

The Bento Arm, an anthropomorphic robotic arm, was designed with the MX

series of actuators (Robotis Inc.), which are more powerful and robust than the

AX-18 actuators (Dawson et al., 2014). Similar to the AX-18 smart robotic

arm, the Bento Arm can be controlled by switching between its five degrees

of freedom: humeral internal/external rotation, elbow flexion/extension, wrist

rotation, wrist flexion/extension, and gripper open/close. The arm can also be

mounted on a socket with a harness and controlled by persons with upper-limb

amputations like a commercial myoelectric arm. Details of the design of the

Bento Arm can be found in Dawson et al. (2014).
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2.5.3 Tasks

In many of the experiments described in this thesis, we ask subjects to perform

a task called a modified box-and-blocks task. Traditionally, the box-and-blocks

task has been used as a clinical test to assess a patient’s manual dexterity. In

the clinical version of the task, participants are asked to move as many wooden

blocks as possible from one side of a divided box to the other in a minute or

less. More details of the clinical task are provided in Mathiowetz et al. (1985).

In the modified version, we use five toy balls positioned on one side of the

box (Pilarski et al., 2012; Dawson et al., 2012). Balls were chosen to be used

instead of blocks because they are easier to grip with the robotic arm. In

the modified task, we seek to measure the time needed to move the objects

as opposed to the number of objects moved in a given time. The modified

box-and-blocks task is an example of a repetitive task that also varies with

each pass, as not every path to the goal need be identical.
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Chapter 3

Adaptive Switching

3.1 Introduction

The gated control method of switching between control channels is a com-

mon solution for controlling multiple prosthetic functions. However, frequent

switching between the functions of a prosthetic arm comes at a cost of in-

creased cognitive load, a less intuitive control interface (Carlsen et al., 2014),

and longer task time. Previous work using pre-recorded data has suggested

that learning predictions about which joint a user will control could decrease

the associated costs of switching, reducing the total experiment time and total

joint transition time (Pilarski et al., 2012).

In this chapter, we extend prior studies to present evidence that adaptive

switching does in fact provide benefit during the real time operation of a

robotic arm by a prosthetic user. This work includes a simple demonstration of

the use of prediction learning in real time to improve the control of a prosthetic

device during use by an amputee subject and an able-bodied subject. We

also include preliminary results from three able-bodied subjects performing a

second, more complex task. In both cases, predictions are learned and used

in real time by the control system to reduce the burden of switching on the

user, making it easier and faster to switch to the user’s intended next joint or

function. The goal of this work is to demonstrate that adaptive switching, as a

core application of machine learning, could have a direct effect on reducing the

effort of amputee users operating complex multifunctional prosthetic devices.
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3.2 Methods

3.2.1 Simple Task

In order to implement and assess adaptive switching, a transhumeral amputee

subject and an able-bodied subject were recruited to perform a simple, semi-

repetitive task using an experimental robotic arm. The amputee subject was a

body-powered prosthetic user and had no experience using myoelectric control

or using our experimental robotic arm. The able-bodied subject had some

previous experience controlling myoelectric robotic devices. EMG electrodes

were attached to both subjects in the manner described in section 2.5.1.

For the simple task, we used the MTT arm as the robotic interface. Fig.

3.1a shows the amputee subject using the MTT to perform a simple task. The

MTT was affixed to a table, and operated within a workspace centred on the

robot’s axis of humeral rotation.

Each subject was given time to become familiar with the operation of

the MTT. After familiarization, the subjects were presented with a specific

task that involved a subset of the available joints (hand open/close, wrist

flexion/extension, elbow flexion and extension, and humeral internal/external

rotation). The task was chosen to be functionally comparable to tasks of daily

living such as picking up a dish and placing it on a shelf. The instruction given

to each subject in both the non-adaptive and adaptive trials was to manipulate

the MTT to repetitively open and close the hand (i.e., as if grasping and

releasing an imaginary object) on one side of the task workspace, perform

humeral rotation to the opposite side of the workspace, repeatedly flex and

extend the wrist joint (i.e., as if waving), and then perform humeral rotation

back to the starting side of the workspace. Each trial involved repeating this

sequence as many times as possible for 3 minutes.

Two types of trials were performed in order to test the predictive capa-

bilities of our proposed control approach: trials using our adaptive switching

algorithm (adaptive trials) were compared with conventional non-predictive

switching methods (non-adaptive trials). Three 3-minute trials were completed

for each condition of non-adaptive and adaptive switching (in alternating fash-
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Humeral 
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external 
rotation

Elbow 
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Wrist 
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Wrist 
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extension
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Figure 3.1: Experimental robot arms used in adaptive switching. (a) Am-
putee participant performing simple tasks with the MTT arm using myoelec-
tric control signals; (b) the Bento Arm, controlled by an able-bodied subject
performing a modified box-and-blocks task; and (c) a schematic of the Bento
arm (without outer casing) depicting the different motions available to the
user. The MTT also operates as depicted in (c).

28



ion), and in both types of trials, an auditory cue was provided to the subject.

This auditory cue was a synthesized voice, which named the active joint (i.e.,

‘shoulder’, ‘elbow’, ‘wrist’, or ‘hand’) each time the subject switched.

In non-adaptive trials, the subjects switched their myoelectric control be-

tween four joints in a fixed switching order: hand, wrist, elbow, and humeral

rotation. This non-adaptive setup was selected to reflect how traditional di-

rect myoelectric control (gated control) is programmed in order to access all

four joint motions with limited control sites. In contrast, in adaptive tri-

als, the joints were continually re-ordered in the switching list in real time,

based on their predicted likelihood of being used next. This was accomplished

throughout the course of the task through the use of GVFs. GVFs allow the

control system’s programming to continually learn and adapt with each suc-

cessive control signal received from the user and subsequent joint motion of

the robot arm—in essence, the system learns to present the appropriate switch

suggestion via ongoing observations of a user’s actions.

Algorithms

The algorithm used in gated control, or non-adaptive switching, is described in

Fig. 3.2. In the non-adaptive switching algorithm, control and switch signals

from the user are observed. If the user initiates a switch to a new joint, the

active joint becomes the next joint in the static list of all controllable joints.

If the system receives EMG control signals from the user, the current active

joint is moved.

1.   initialize: switch_list, active_joint_index

2.   repeat:

3.          observe EMGC, EMGS

4.          if switch(EMGS):

5.                 increment active_joint_index

6.          move_joint(switch_list[active_joint_index], EMGC)

switch_list = [S1, …, SN]

active_joint_index = index of switch_list

switch()

move_joint()

//  Observe EMG control and switch signals 
//  If a switch is initiated
//  Switch to the next joint in the switching list
//  Move active joint according to EMG control signals

Cyclic list of all controllable joints

Points to index of active joint in switching list

Function that returns a boolean based on switch input signal

Function that returns a signal that directs arm motion

Figure 3.2: The non-adaptive switching algorithm.

The procedure for using GVF predictions during adaptive trials was as
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described by Pilarski et al. (2012). Learned GVFs are able to represent pre-

dictions about a subject’s situation-specific use of each joint in a myoelectric

switching list. In the current work, and in contrast to prior demonstrations,

GVF predictions were learned during real-time robotic arm use by the subjects

and were continually ranked based on their relative magnitudes. The system

learned to predict the intended joint for the given task in advance of the switch

signal from the user. When a switch signal was received by the system, the

highest-ranked joint in the adaptive switching list became the active joint,

with the remaining joints filling in the new switching list in decreasing order

of prediction strength. Motion control signals were used to drive the current

active joint. Fig. 3.3 describes the algorithm used in adaptive switching.

1.   initialize: 1 GVF per joint, switch_list, active_joint_index, switching

2.   repeat:

3. observe EMGC, EMGS, s

4. get predictions p from GVFs given s

5. if not switching:

6. update switch_list based on magnitude p

7. if switch(EMGS):

8. switching ← true

9. increment active_joint_index

10. move_joint(switch_list[active_joint_index], EMGC)

11. if moved:

12. switching ← false

13. for all gvf in GVFs:

14. gvf.update(s)

switch_list = [S1, …, SN]

active_joint_index = index of switch list

p = vector of predictions of motion of each joint

switch()

move_joint()

//  Observe EMG control and switch signals, state
//  Compute predictions
//  If switching flag set to false
//  Update switching list
//  If a switch is initiated
//  Switching flag set to true
//  Switch to the next joint in the switching list
//  Move active joint according to EMG control signals
//  If arm has moved
//  Switching flag set to false
//  For each joint
//  Update GVF and learner using TD learning

Cyclic list of all controllable joints

Points to index of active joint in switching list

Adaptive switching predictions

Function that returns a boolean based on switch input signal

Function that returns a signal that directs arm motion

Figure 3.3: The adaptive switching algorithm.

To learn real-time predictions of the next active joint, we combined senso-

rimotor data from the robot with EMG data from the human user. Each of

the AX-18 motors that make up the joints of the MTT produced a number of

useful sensory signals, including measures of angular position, angular velocity,

load (current), temperature, and voltage. We provided joint angular position

and angular velocity observations to the learning system as information about

the current state. Features based on the current state of the arm enabled the

system to build up expectations about future switching decisions made by the

user. The machine learning system was re-initialized at the beginning of each

trial such that GVFs started each trial with no stored knowledge (predictions)

about the user or the task in question.
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TD(λ) learning with tile coding function approximation was used to make

prediction estimates at a rate of 20 Hz for each of the joints. The values of the

learning parameters were as follows: α was set to 0.0125, λ was set to 0.999,

and γ was 0.97. Each position and velocity input was tiled into 6 units, and

there were a total of 6 tilings, each offset by a small fraction of the tile space.

We used a 5-way tile coder, with the position of each joint (shoulder, elbow,

wrist, and hand) making up dimensions 1 to 4 of each array, and one of the

velocity signals making up the 5th dimension (see Tile Coding, section 2.2.1).

3.2.2 Modified Box-and-Blocks Task

In order to demonstrate transferability of this approach to a functional task

commonly used in the clinical setting, we conducted a second experiment with

three able-bodied subjects using the Bento Arm. A more complex task was

designed to evaluate predictive learning, based on a modified box-and-blocks

task. The traditional box-and-blocks task assesses a subject’s manual dexterity

by counting the number of blocks a subject can move from one side of a

divided box to the other in a predetermined amount of time (Mathiowetz

et al., 1985). Subsequent studies have shown that simplifying the task to fewer

block movements does not result in a loss of valid information on performance

(Dawson et al., 2014). For our experiments, we therefore used a modified task

that measured the amount of time required for a subject to move five rubber

balls from one side of a box to the other (Dawson et al., 2012).

Two of the three able-bodied subjects had no previous experience control-

ling a myoelectrically driven robotic arm. Myoelectric signals were acquired

from each subject through an EMG setup identical to the Bagnoli setup used

on the simple task. The Bento Arm (Fig. 3.1b) was controlled using the Robot

Operating System (ROS) in a multi-computer configuration, with a central

computer handling the direct communication with the arm and recording the

EMG. A second computer recorded data over TCP/IP communication using

ROS’s data logging functionality. Visualization and management of EMG and

robotic arm parameters was managed on a third computer.

After a period of familiarization, subjects were asked to control the Bento
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Arm, alternating between adaptive and non-adaptive switching trials (for a

total of three adaptive and three non-adaptive trials). Each trial consisted of

five iterations of moving all five balls from one side of the divider to the other.

3.3 Results

Fig. 3.4 compares the number of switches required per event for non-adaptive

switching (top) with the number of switches required during adaptive switching

(bottom) for the amputee subject. Each switching event began when the user

triggered a joint switch, and ended when the user initiated movement of any

of the MTT joints. Therefore, all switches made while shifting control to a

new joint were counted as a single switching event. In the adaptive switching

mode, the system very quickly adjusted to choose the correct joint for each

part of the task with only one exception, as compared to the non-adaptive

mode which consistently required additional switches through the trials.

Fig. 3.5 shows that with the simple task performed by both subjects, the

average amount of time (measured in seconds) dedicated to switching and the

total number of switches required to complete the task were significantly less

for the adaptive trials.

Fig. 3.6 compares each iteration of the non-adaptive and adaptive switch-

ing trials in the modified box-and-blocks task, averaged over three data sets,

where each iteration involved moving all five of the balls from one side of the

box to the other. Figs. 3.6a, 3.6c, and 3.6e illustrate the mean total time

spent by each subject completing each iteration of the task, and Figs. 3.6b,

3.6d, and 3.6f illustrate the mean total number of switches required for each

subject per iteration of the task. The dotted line in each of Figs. 3.6b, 3.6d,

and 3.6f represents the minimum number of switches required to complete one

iteration of the non-adaptive trial (i.e., the best-case performance that a sub-

ject can obtain using the static switching list for this task); the dashed line

depicts the optimal number of switches (i.e., the number of switches required

if the system predicted each joint with 100% accuracy and switched perfectly

with no errors). To perform a single iteration of the box-and-blocks task us-
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Figure 3.4: Number of voluntary switches initiated by the amputee subject
per switching event over the course of a single 3 minute trial. Shown for both
non-adaptive (top) and adaptive control (bottom) approaches. The figure is
also representative of switching by the non-amputee subject.
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Figure 3.5: Average time and switches per trial for both the amputee and
able-bodied subject. (a) Average time the amputee subject spent switching
per trial when using non-adaptive and adaptive switching (left and right, re-
spectively, average over 3 trials); (b) average number of switches made by
the amputee subject per trial when using non-adaptive and adaptive switch-
ing (left and right, respectively, average over 3 trials); (c) average time the
able-bodied subject spent switching per trial when using non-adaptive and
adaptive switching (left and right, respectively, average over 3 trials); (d) av-
erage number of switches made by the able-bodied subject per trial when using
non-adaptive and adaptive switching (left and right, respectively, average over
3 trials).
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Figure 3.6: Comparison between adaptive and non-adaptive switching aver-
aged over 3 trials. Total time (a) and number of switches (b) of the modified
box-and-blocks task are shown by iteration of the task. Dotted line shows the
minimum number of switches possible using a static switching list. Dashed
line shows the best possible switching performance possible on this task with
no user errors and perfect switching (a single switch) at each switching event.
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ing the non-adaptive switching list for this robot, a minimum of 75 switches

would be required. As illustrated by Figs. 3.6b, 3.6d, and 3.6f, after the first

or second iteration (in which the system is still learning), adaptive switch-

ing required fewer than 75 switches to complete each iteration. Furthermore,

adaptive switching came close to meeting the optimal target of 35 switches.

For the modified box-and-blocks task, 35 switches represents the perfect sit-

uation where the user made no errors and was given the correct joint every

time they switched, with only one manual prompt per switching event. For all

subjects, both experienced and inexperienced, in the fifth and final iteration of

the modified box-and-blocks task adaptive switching demonstrated significant

improvements in terms of both the number of switches required to complete

the task iteration and the task completion time.

Fig. 3.7 shows the mean time spent switching and the total number of

switches per trial for adaptive and non-adaptive switching during the box-

and-blocks task. For the experienced myoelectric user (Subject 1), the mean

completion times for the adaptive and non-adaptive trials of the box-and-

blocks task were 11.9 ± 1.2 min and 13.4 ± 0.8 min, respectively, whereas the

mean times spent switching were 4.9 ± 0.4 min and 6.5 ± 0.1 min, respectively

(Fig. 3.7a). The mean total number of switches for this subject was 337 ± 15

for the adaptive trials and 463 ± 22 for the non-adaptive trials (Fig. 3.7b).

The non-experienced myoelectric users spent 12.6 ± 1.1 min and 14.2 ± 1.2

min completing the adaptive trials; they spent 13.7 ± 2.1 min and 14.3 ±

0.6 min completing the non-adaptive trials. They also spent 9.8 ± 1.2 min

and 10.5 ± 1.1 min switching during adaptive trials and 11.0 ± 3.2 min and

10.5 ± 0.7 min switching during non-adaptive trials (Fig. 3.7a). The mean

total number of switches for adaptive trials were 359 ± 29 and 369 ± 30; for

non-adaptive trials, the mean number of switches required were 528 ± 10 and

503 ± 17 (Fig. 3.7b).
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Figure 3.7: Average time spent switching and average number of switches per
trial for able-bodied subjects. (a) Average time the able-bodied subjects spent
switching per trial when using non-adaptive and adaptive switching (average
over 3 trials); (b) average number of switches made by the able-bodied subjects
per trial when using non-adaptive and adaptive switching (average over 3
trials).

37



3.4 Discussion

The goal of this work was to directly compare adaptive to non-adaptive switch-

ing to determine the potential utility of adaptive switching in reducing the

effort and burden of controlling a robotic arm with more degrees of freedom

available than direct control sites. There was a significant difference between

non-adaptive switching and adaptive switching during the simple task. With

adaptive switching enabled, after a brief initial period of learning by the system

(i.e., the first several switching events), typically only one switch was required

by the user to move control to the most appropriate joint. Adaptive switching

also produced a large decrease in time spent switching compared with non-

adaptive switching. For each 3-minute trial with the MTT, each subject saved

an average of about 20 seconds when adaptive switching was enabled (11%

of the total task time). This could have potential implications on prosthetic

users performing more complex tasks requiring multiple joint modal switching

by reducing the total amount of time and burden to affect the desired joint

control. If joint switching could be made more intuitive (i.e., if the prosthesis

reliably selected the correct joint at the right time), it might encourage pros-

thetic users to utilize additional joint control motions more often, rather than

to deliberately restrict control options.

Adaptive switching was also able to reduce time and switching effort in

the more complex task. In comparing the decrease in time and number of

switches (Fig. 3.6) between the first and fifth task iterations, for all subjects

there was only a minor decrease during non-adaptive switching, which is most

likely due to improved performance with experience. However, the decrease

in time and switches was more rapid and greater for the adaptive switching.

By the final iteration of the task, the average number of switches made dur-

ing adaptive switching decreased to approximately half that of non-adaptive

switching. Consequently, by the final iteration, adaptive switching saved the

experienced subject more than 30 seconds, or 20% of the total time.

The potential impact that user training may have on the functionality of

adaptive switching is suggested by the relationship between the per-iteration
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data in Fig. 3.6 and the aggregate data in Fig. 3.7. In those datasets, it

is clearly evident that the use of adaptive switching reduced the number of

switching interactions needed by the user to well below the level possible with

non-adaptive switching. Indeed, by the third iteration of the task, experi-

enced and non-experienced users averaged less switches per iteration than the

75-switch best-case performance of the non-adaptive approach. If the time

to perform a switch and resume motion was constant for all subjects, the

switching data would suggest significant time savings for both experienced

and non-experienced users (as in the simple task, Fig. 3.5). However, for non-

experienced myoelectric users, the difference in the total time spent switching

between the adaptive and non-adaptive methods was less (Fig. 3.7, Subjects 2

and 3). Non-experienced users were observed to hesitate more following each

adaptive switching event and before moving the selected prosthetic joint, pri-

marily in earlier task iterations (as seen in the completion times for earlier

iterations as compared to later iterations; Fig. 3.6). One subject indicated

that during adaptive switching he paused slightly after each switch to deter-

mine the correctness of the choice made by the adaptive switching system.

Conversely, the experienced myoelectric user reported greater trust in the

choice made by the adaptive switching system, and demonstrated less total

time and per-iteration time to complete the task (Fig. 3.6 and 3.7, Subject 1).

Based on both these quantitative and qualitative observations, we believe that

with more repetitions and greater experience with the adaptive switching, our

non-experienced users would demonstrate time savings similar to those of the

experienced user. More detailed studies are needed to determine the roles that

trust, experience, and training play in the successful use of adaptive switching

and related control adaption paradigms.

The results from both the simple and more complex tasks suggest there

are efficiencies with adaptive switching, and they agree with our expectations

inferred from the simple task presented to the subject: there were clear regions

of the task space that corresponded to the use of specific joints. For the simple

task, it would have been possible to hand-code several different switching lists

in response to the different positions of the shoulder actuator. The simplicity
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of the task design allowed us to easily verify the correctness of the adaptive

switching options proposed by the learning system. However, a key observation

from the present work is that situation-specific switching orders do not need to

be hand-coded; our system learns situational delineations as the robotic arm

is being used, and without prior information about the user or the task (thus

implementing a form of adaptation, or ongoing self-calibration, which has been

pointed out to be of great clinical interest as it removes the need for regular

recalibration by clinical staff (Scheme and Englehart, 2011; Sensinger et al.,

2009). Furthermore, we have observed that as the task changes or becomes

more complex, as in the case of the modified box-and-blocks task, the learning

system can scale up naturally and easily without the need for manual tuning.

It is important to note that while our results closely align with expecta-

tions from prior work (Pilarski et al., 2012), the present experiments are case

studies, which limits the generalizability of the conclusions. In addition, trans-

ferability to other tasks will need to be explored in order to assess relevance of

this approach to the multitude of tasks required of prosthetic users in daily life.

One strength of our proposed approach is that it is able to optimize prosthetic

control for a repeated pattern of prosthetic movements, without that pattern

being explicitly specified by a user or clinician. The adaptive switching system

begins with simple deterministic switching, as would be familiar to myoelectric

prosthesis users, and gradually optimizes control as regularities are observed in

the movements made by the user. Because of the way that information is pre-

sented to the adaptive switching system (function approximation, c.f., Pilarski

et al., 2012), the system is able to leverage similarities and generalities in the

movements being performed—i.e., it is able to form generalizations that are

applicable to multiple tasks, such as “after reaching forward the user usually

grabs an object”. While these generalities allow some translation of learned

patterns to novel tasks, it is important to note that the system will still need

experience with a new class of tasks before being able to form a reasonable

set of adaptive switching suggestions. For daily-life usability, we suggest that

adaptive switching may also need to be engaged and disengaged based on the

control systems confidence in its own predictions; in other words, it may be
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more intuitive for users if prosthesis control defaults to simple deterministic

switching until the system has enough experience to appropriately adapt the

switching list in a given setting. How best to engage and disengage adaptive

switching in this way, and what function approximation methods will allow

the best generalization between real-world tasks remain open questions. Fu-

ture work will also need to identify the most effective way to communicate

the system’s switching suggestions back to the user—auditory (as used here),

visual, tactile, and vibratory signals are all valid possibilities for feedback.

Ideally these experiments will be repeated in multiple subjects with a range

of experience in myoelectric control, and on subjects using donned prostheses

during daily-life tasks. However, the current case study is a necessary and

encouraging first demonstration of the practical applicability of our approach

with both able-bodied and amputee subjects.

3.5 Conclusion

The primary contribution of this chapter is a concrete demonstration of adap-

tive switching in an applied setting of robotic arm control, in both able-bodied

subjects and an amputee subject. This study is the first time that real-time

prediction learning has been used to improve the control interface of a pros-

thetic device during uninterrupted use. Our experiments with an amputee

subject showed that for simple tasks, enabling adaptive switching on a robotic

arm significantly decreased the time spent switching between functions. This

extends previous work using pre-recorded (non-real-time) data that indicated

the potential merit of adaptive switching. These results have been extended to

a box-and-blocks task that is more representative of complex everyday tasks.

We believe that adaptive switching can help to decrease the time and cogni-

tive load required by amputees during complex tasks and real-world functional

situations involving wearable prostheses. An extension of this work can be seen

in Chapter 5, wherein we study the use of adaptive switching in shared-control

functional tasks with prosthetic users. Switching control is therefore further

delegated to a control system to reduce the cognitive burden on the user.
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Chapter 4

Predicting Switch Signals

4.1 Introduction

In the previous chapter, we demonstrated that it is possible to predict which

joint a user intends to use. A natural extension is to ask “when will a user

switch to a new joint?” In this chapter, we further explore the unification

of RL with conventional switching-based control interfaces. In particular, we

demonstrate the use of online TD learning with GVFs to predict when a user

will switch their control influence between the different control functions of

an articulated robot arm. We expect that when a system is certain enough

about its predictions regarding a user’s switching target and switching timing,

it can begin to take over some function switching decisions from the user

to streamline control and potentially decrease the time and effort needed to

complete tasks. Our over-arching goal is to continue to develop predictive

approaches that ultimately enable the more natural control of complex assistive

devices by reducing the number of manual interactions required by a user.

4.2 Methods

The ExArm was used as the experimental platform for this work (Figure 4.1).

Electrodes were affixed to the skin of non-amputee subjects and used to mea-

sure EMG signals. These EMG signals were mapped to two control channels:

one to actuate a robotic joint, and one to switch between the different joints

in a fixed, sequential fashion.
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Figure 4.1: The experimental platform used in this work: a wearable robot limb
that is controlled using muscle signals from the human body, where the user
sequentially controls and switches between the available joints using voluntary
muscle contractions (similar to the control interface for a commercial forearm
prosthesis).

In the previous chapter, we developed GVF predictions about joint motion

from human interaction. In this chapter, we examine the ability of GVF-based

TD learning to predict joint switching from human interaction with the robot

system during simple movement tasks. An able-bodied (non-amputee) subject

actuated the myoelectric arm using the EMG setup described in section 2.5.1.

Using this wearable system, each subject performed a semi-repetitive motion,

moving the robot’s shoulder to the right, moving the elbow up and down an

arbitrary number of times, moving the shoulder joint back to the left, and

then moving the wrist up and down an arbitrary number of times. This H-

shaped movement pattern was repeated for 10–30 minutes. As shown in Fig.

4.2, this resulted in a rich stream of data for use by the RL system, and

provided a challenging setting for learning due to the temporal variability and

non-stationary nature of the user’s myoelectric control signals and switching

behaviour.

The knowledge learned by our system regarding a user’s switching actions

took the form of temporally extended predictions about a user’s switching

prompts; these predictions were similar to the predictions made in previous

work on anticipating the activity of user-controlled actuators (Pilarski et al.,

2012; Pilarski and Sutton, 2012). In this work, predictions were acquired and

updated through multiple iterations using an implementation of GVFs (Sut-

ton et al., 2011) and nexting (Modayil et al., 2012b). Following the approach
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Figure 4.2: Example of the sensorimotor data stream from the human-machine
interface, including recorded muscle activity (EMG) for control and switching
channels (black and purple traces, top), human switching actions (purple trace,
bottom), and the angle and speed for three of the robot’s joints (red, blue,
and green traces, bottom).
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of Pilarski et al. (2012), GVFs were updated on each time step using TD

learning with eligibility traces and 5-way tile-coding function approximation.

Each GVF learner was initialized with parameters specifying the prediction of

interest, including the timescale of the temporally extended prediction and the

target signal of interest—here a binary signal that was active when the user

prompted the system to switch motor functions. In this experiment, α was set

to 0.1 (divided by the number of active features—in this case, 56), γ was set

to 0.9, and λ was set to 0.99. Signal sampling and learning updates occurred

at 15 Hz. The state representation used by the machine learner was comprised

of motor feedback (e.g., position, speed) from the robot arm and signals relat-

ing to the human’s recorded muscle activity (e.g., processed EMG signals and

switching cues), as well historical information in the form of decayed traces

of these signals. Each feature was divided into 8 tiles (with 8 tilings). As in

previous work, our system also learned a series of temporally extended predic-

tions regarding the motion of each user-driven joint and the user’s myoelectric

signals. These temporally extended predictions were initialized with the same

parameters and state representation as the predictions about switch signals.

4.3 Results and Discussion

As shown in Figure 4.3, top, following a period of learning our approach demon-

strated the ability to forecast an upcoming switching cue from the human user.

Advance knowledge of switching (a rise in the dark purple trace) was observed

to arrive a fraction of a second before the actual human-initiated event (grey

pulse). Predictions on both training and testing data (dark purple traces)

were also observed to begin to approach the true, computed return (light pur-

ple trace) as learning progressed. Additional learning is expected to improve

the agreement between the true and learned predictions, and testing is ongo-

ing to determine the best state representation for this learning scenario. As

expected from previous work, our approach was also able to consistently an-

ticipate which joint a human user would actuate next while performing their

task (Figure 4.3, bottom). Testing and training data were sampled from the
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same human user, with the training and testing sessions being conducted on

different days. The testing data were not seen by the learning system prior to

evaluation.

By ranking the magnitude of joint activity predictions prior to manual

switching by the user, a learning system is able to determine the most appro-

priate joint to select at the time of switching (Pilarski et al., 2012). In other

words, simple relationships between the predictions can be used to formulate

the system’s switching suggestions, i.e., which joint to actuate next. These

suggestions depend on both context and learned knowledge about a user’s

preferences. The present work contributes a way to determine the desired

timing of switching actions. Taken together, these straightforward applica-

tions of learned predictive knowledge provide a way to allow a learning-based

control system to gradually assume more autonomy and decision-making re-

sponsibility during ongoing human-robot interactions. One useful feature of

this approach is that no explicit or time-consuming reinforcement is needed

from the human user to correct or affirm the learning system’s suggested de-

cisions; the use of a mode or function by the user verifies the system’s choices,

while use of an alternate function decreases the learning system’s predictions

about the suitability of a given control option (Pilarski and Sutton, 2012). Our

approach therefore differs from predominant approaches to human-directed RL

like human reward (Thomaz and Breazeal, 2008) and demonstration learning

(Lin, 1992).

The ability shown in the present work to anticipate a switching event

promises to greatly reduce the need to manually initiate switching. The time

needed for switching could potentially even be eliminated in certain situations.

As suggested in Pilarski and Sutton (2012), removing the need to explicitly

switch functions during commonly performed tasks could result in almost as

great a time savings as selecting the optimal switching target or function.
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Figure 4.3: Example of switching event and joint activity predictions on previ-
ously unseen testing data after five iterations of TD learning through 28k steps
of training data. Top: switching event predictions begin to rise in advance
of actual switching events initiated by the user, as shown on both training
and testing data. Bottom: predictions about joint activity rise in advance of
expected joint actuation. Modulating a control interface based on these pre-
dictions promises to reduce the time needed for a user to complete a task with
a multi-joint robot arm (Pilarski et al., 2012; Pilarski and Sutton, 2012).
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4.4 Conclusions

In this work we demonstrated the use of RL to help with human decision mak-

ing, and specifically provided another step towards intuitive human interaction

with a switching-based robot arm. Function switching is a common way to

deal with increasing device complexity, but it poses additional challenges to

the natural and efficient control of devices by a user. To help address the bar-

riers to streamlined human-robot interactions, we deployed state-of-the-art RL

techniques to acquire and maintain knowledge about a user and their robotic

system. Our approach was able to build up and maintain forecasts about a

user’s switching behaviour in real time. We also confirmed previous observa-

tions that our approach can detect a user’s control intent prior to their explicit

control actions. Bringing together these two ideas, a system could potentially

determine what function a user intends to deploy, and when they wish to begin

using the new function.

Our approach allows a user to remain in direct control of a system while

still allowing the device to suggest or initiate increasingly appropriate control

options. Furthermore, the opportunity for ongoing yet optional human inter-

action in the decision-making process provides an intuitive and reward-free

way for users to correct or reinforce the decisions made by a semi-autonomous

machine learning system—there is no need for the user to explicitly reward

the learning system. This preliminary study therefore opens the way for natu-

rally blending the control decisions made a human and their assistive robot or

other human-machine interface. Future work will continue to pursue the inte-

gration of biological and synthetic reinforcement learning and decision-making

systems.
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Chapter 5

Autonomous Switching

5.1 Introduction

Gated control allows users to access multiple prosthetic functions by switching

through a list of functions and selecting the one they wish to control—not

unlike switching through and selecting channels on television. However, to

reduce the complexity of control, the user is typically given access to a few of

the most common functions. We propose instead to preserve a user’s access to

the diverse functions of a myoelectric arm by reducing both the complexity of

their switching choices and the frequency of required switches or other manual

interactions. One way to decrease the number and complexity of switching

interactions is to shift greater autonomy to the prosthetic device, thereby

sharing the burden of control between the human and the machine (Castellini

et al., 2014).

Through the use of nexting, and specifically GVFs (White, 2015; Sutton

et al., 2011), we previously developed a novel switching control method for

myoelectric arms called adaptive switching (see Chapter 3); this approach was

validated in pilot studies with both amputee and non-amputee participants

(Edwards et al., 2015; Pilarski et al., 2012). Adaptive switching re-orders a

list of arm joints for the user on the basis of their predicted likelihood of be-

ing used in a given situation. Adaptive switching was shown to improve the

control time and number of switches required to do a complex task with a

robotic arm, as compared with switching using the conventional static list of

functions (which we here denote non-adaptive switching). When using adap-
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tive switching, subjects performing the task had to switch fewer times to select

their desired function, and experienced myoelectric control users required sig-

nificantly less time to complete the task.

5.1.1 Motivation and Contributions of the Present Work

Although adaptive switching has the effect of reducing the number of interac-

tions (switches) required of a user, for any given task there remains a minimum

number of switches that a user must perform. This is because each time a user

wishes to control a different joint—even with a joint list with perfect predic-

tion accuracy—he or she is required to switch at least once. As a consequence,

greater attention and time is needed for switching between control channels

of the arm that otherwise could be spent on accomplishing the task. We ex-

pect further reductions in task time and effort could be gained by removing

altogether the need to perform manual switching interactions in common or

highly consistent situations.

In this chapter, we introduce a novel control method, termed autonomous

switching, that works in parallel with adaptive switching. Autonomous switch-

ing automatically switches between the joints of a myoelectric arm on the basis

of the predicted likelihood that the user will switch to a different joint than the

one that is currently selected. Like adaptive switching, autonomous switch-

ing uses GVFs to build up and maintain predictions about signals relating

to a user’s control intentions and behaviour. Autonomous switching builds

on previous work described in Chapter 4 (Edwards et al., 2013), in which we

demonstrated that it is possible to build up predictions about when an in-

dividual is likely to switch their control between functions. Our autonomous

switching algorithm is designed in such a way that a myoelectric arm is able to

learn to switch autonomously, and subsequently unlearn the behaviour should

there be a change in the parameters of a task or the user’s intent. Ensuring

the user has the ability to correct the arm’s behaviour through unlearning is

important for daily life, in which the environment and the task are constantly

shifting. Further, we expect that providing cues or feedback to the user about

forthcoming automatic actions of the control system will help streamline the
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use of autonomous switching. Feedback, in the form of tactile cuing, is there-

fore an important element of our algorithm’s practical implementation.

In the remainder of this chapter, we describe our algorithm for autonomous

switching and present results from two experiments that show the practical

learning and unlearning of autonomous switching behaviour during myoelectric

control by an able-bodied subject. The first experiment demonstrates how

autonomous switching can be both learned and then unlearned once a task is

changed. In the second experiment, we compare autonomous switching with

previously tested control methods, and demonstrate the effect of providing

feedback on the user’s performance.

5.2 Methods

5.2.1 Experimental Setup

The robotic arm used in the experiments described in this chapter was the

Bento Arm (Fig. 5.1). Control by the user was set up so as to closely repli-

cate one of the most challenging clinical control cases: a single control channel

with a single momentary trigger (e.g., a button, or pulsed myoelectric co-

contraction) to switch the one channel of control between the multiple func-

tions of a device (Parker et al., 2006). In Experiment 1, the arm was controlled

with an Xbox 360 controller. A button on the right of the controller was pro-

grammed to switch between joints, and the left thumb joystick was used to

move the arm bidirectionally. In Experiment 2, the arm was controlled using

EMG electrodes. Able-bodied subjects were recruited and gave informed con-

sent in accordance with the study’s Human Research Ethics Board approval.

5.2.2 Learning Algorithms and General Value Functions

As noted above, our control approach uses nexting in the form of GVFs to

build up predictions about sensorimotor signals at various timescales (Sutton

et al., 2011). In our experiments with adaptive and autonomous switching, we

framed two distinct questions through the use of GVFs:
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1. Which joint, grasp, or function of a robotic arm will a user want to move

next? (Adaptive switching.)

2. At a given moment, is the user going to initiate a switch to a different

joint than the one that is currently selected? (Autonomous switching.)

5.2.3 Adaptive Switching

Adaptive switching was implemented as described in previous work (Chapter

3; Edwards et al. 2015). We used the standard temporal difference learning

algorithm, TD(λ) (Sutton and Barto, 1998), to allow a system to computa-

tionally answer the first of these questions, and in doing so, use its learned

predictions to re-order the options presented to the user during switching.

Learning and control occurred at 20 Hz. At each timestep, the system

observed signals from the myoelectric arm. These signals comprised relevant

information about each joint of the Bento Arm as well as EMG signals from

the user controlling the arm. For the adaptive switching state representation,

we provided input signals relating to the angular movement of each joint (the

position and velocity of each servo motor) and torque information from the

gripper joint only, which is measured in terms of current load. This represen-

tation provided clear predictions of joint motion after only a brief period of

learning, and thus a basis for a reasonable, adaptive joint order during ongoing

use.

We used a tile coding function approximation method (Sutton and Barto,

1998) (Chapter 2) to create a mapping of the signal space. Since the represen-

tation consisted of 11 observations (five position signals, five velocity signals,

and the load on the gripper), we began with an 11-dimensional signal space.

The range of each observed signal was normalized and divided into six discrete

units, or tiles, to form a large binary array, with a single unit representing the

current active state. We generalized learned weights over a broad area of the

space by overlapping four identical tilings, each with an offset from the origin,

and each containing a single active tile. Although the total number of features

was over 1.4 billion, a hashing technique was used to reduce the size of the
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array to slightly over 1 million features.

For adaptive switching trials, γ was set to 0.9. Replacing eligibility traces

(discussed in Sutton and Barto, 1998) and the weight vector were initialized

to 0. The values of λ and α were fixed at 0.99 and 0.0025, respectively.

We followed the equations outlined in Chapter 2 for learning GVFs. This

sequence of equations was repeated at each timestep in adaptive switching

experiments. A separate prediction agent was initialized for each joint of

the robot arm. As per the procedure from Chapter 3, at each timestep, the

resulting joint predictions were ordered in terms of relative magnitude, and

the joint list was updated and presented to the user in a descending order of

magnitude. For example, if the prediction of shoulder joint motion for the

current state was highest of all the joint predictions and if the user were to

switch, the shoulder would become the next active joint. However, in the

adaptive switching control scheme, from the moment a switch sequence began

until a joint was chosen and moved, the joint order was frozen. The joint that

was last moved always occupied the last position in the list (Edwards et al.,

2015).

5.2.4 Autonomous Switching

The algorithm for autonomous switching was also based on TD learning of

GVFs. Unlike adaptive switching, wherein the control system’s objective was

to learn what joint a user will select next, in autonomous switching the control

system is trying to learn when a user will switch between joints. In more

precise terms, the control system aims to learn a computational answer to the

following question: “If the system were to switch autonomously at the current

moment, would the user move the newly selected joint or manually correct to

continue using the previous joint?” Should the system’s prediction be strong

enough that the user would accept and utilize the new joint, the system could

then autonomously switch for the user. For example, when the user is reaching

for an object on a table, if the system predicted that the user would readily

begin closing their hand if it switched their control to a grasping actuator, an

autonomous switch would occur. This behaviour—and the predictions it is
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based on—can be learned directly by watching the user perform the task, as

in adaptive switching.

However, the when question posed by autonomous switching cannot be

practically learned using the same TD methods as adaptive switching. In

preliminary experiments, we found that autonomous switching with on-policy

TD learning about the switching signal itself created the unstable condition

in which switches made by the system are self-reinforcing, causing predictions

about switching to rise indefinitely. In such a scenario, errors made by the

user in switching or any changes in the task or task environment could not

be corrected. For autonomy to be accepted and effective, a system should

be able to modify previously learned switching behaviour. For these reasons,

autonomous switching required GVFs and a related learning system with the

capacity to both learn and unlearn autonomous switching behaviour through-

out the course of a task.

In autonomous switching, GVFs predict what the outcome would be if the

system switched for the user at a given moment. Because this GVF question

relates to a switching behaviour (a policy of switching, not switching, or mov-

ing a joint in a given state) different than the one the user may currently be

pursuing, autonomous switching requires the use of an off-policy algorithm,

GTD(λ) (Maei, 2011). In these experiments, the behaviour policy was defined

by how the user was controlling the robot arm, and the target policy was

defined as “always switch for the user if not currently switching”.

Computationally implementing the autonomous switching GVF question

posed above, we chose the cumulant Z to be a binary signal that took a value

of 1 for one timestep at the end of a switching sequence only if the user moved

a different joint than the joint that was active at the start of switching. For

instance, if a user switched from the elbow to a different joint and moved the

selected joint, the cumulant would momentarily be 1, indicating the user’s

intention to switch to a new joint. Alternatively, if a user initiated a switch

sequence, switching from the elbow and back again to the elbow, the cumu-

lant remained 0 at the moment motion resumed, indicating the intention to

continue using the same joint. Further, to fully specify the predictive question
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being asked in autonomous switching, we used a state-conditional discounting

factor γ(S), where γ = 1 from the beginning of a switching sequence until the

moment a new joint was selected and moved, and γ = 0 otherwise.

This situation-conditional way of designing the GVF question for autonomous

switching provides a way for users to correct the switching behaviour of the

arm and direct its learning when there are errors in training or changes to the

environment or to the user’s intent. As in adaptive switching, a user’s use

of the system’s automatic switching behaviour provides implicit reinforcement

for the system’s choice to switch, by way of strengthened predictions, while

using the same joint will decrease the system’s probability of switching by

decreasing the predictions for a given situation.

To form a feature vector for the learning agent we used tile coding function

approximation as above, but now using the position and velocity of all five

joints, the torque on the gripper, and also a moving average of the EMG

channels responsible for joint motion as signals (13 inputs). The total number

of features in the array was over 52 billion and was hashed down to just over

1 million (with four active features).

In autonomous switching experiments, the behaviour policy matches the

target policy from the start of a switching sequence until the moment the

user selects and begins moving a new joint. In all autonomous switching

experiments, α was set to 0.025 and β was set to 0.000025.

Throughout the task, we used γ(S) as described above with λ set to 1. This

had an important effect on the shape of the predictions leading up to a change

in the active joint. Because γ had a value of 1 throughout switching sequences,

this resulted in a “square” shape to the predictions, which maintained the

same height regardless of the length of the current switching sequence. In this

way, the beginning of a switching sequence determines whether the predictions

exceed the predetermined threshold for autonomous switching to occur.

The threshold for autonomous switching was empirically determined and

fixed for all experiments at 0.3. There was a separate prediction learner for

each of the five starting joints of a switching sequence, with the prediction

of the last-moved joint’s learner being the one evaluated against the thresh-
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old. Although other techniques could have been used to determine when an

autonomous switch should occur, a threshold has proven to be a simple but

effective way to initiate a switch, and approximately corresponds to a level of

certainty in the prediction. We chose to limit autonomous switching to times

when the arm was not moving and the user had not yet switched during a

switching sequence.

The algorithm for autonomous switching is summarized in Fig. 5.2. Be-

cause autonomous switching is acting in combination with adaptive switching,

the algorithm is similar to the adaptive switching algorithm presented in Chap-

ter 3.

5.2.5 Tasks

Experiment 1

The task chosen for Experiment 1 to assess unlearning was a task similar to

the simple task used in previous studies (Edwards et al., 2015, 2013). The

subject, who was able-bodied and an experienced operator of the Bento Arm,

controlled the arm with the Xbox controller. The task was divided into two

phases. In the first phase, the subject was instructed to open and close the

gripper with the shoulder on the far left side of its angular range, rotate the

shoulder to the far right side of its range, open and close the gripper again,

and rotate the shoulder back to its starting position. Throughout the entire

task, both adaptive switching and autonomous switching were enabled—thus,

the joint list was continually being re-ordered, and simultaneously, the arm

was learning when to switch autonomously. The first phase of the task was

repeated until the arm began to switch autonomously at each instance of a

switch. At this point, the task was altered slightly for the second phase: the

gripper was only opened and closed on the left side of the shoulder’s range.

The second phase of the task was repeated in this way five times.

Experiment 2

In Experiment 2, another able-bodied subject was asked to control the Bento

Arm with EMG to perform a task similar to the first. The subject began
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Figure 5.1: The Bento Arm, a custom-designed robot arm, was controlled by
able-bodied subjects in two separate experiments. The Bento Arm has five
joints that can be controlled via EMG signals.

1.   initialize: 2 GVFs per joint, switch_list, active_joint_index, switching

2.   repeat:

3. observe EMGC, EMGS, s1, s2

4. get predictions p from GVFs given s1

5.          get predictions p_switch from GVFs given s2

6.          if not switching:

7.                 update switch_list based on magnitude p

8.                 if auto_switch(p_switch):

9.                        increment active_joint_index

10.                      switching← true

11.        if switch(EMGS):

12.               switching ← true

13.               increment active_joint_index

14.        move_joint(switch_list[active_joint_index], EMGC)

15.        if moved:

16.               switching ← false

17.        for all gvf in adaptive switching GVFs:

18.               gvf.update(s1)

19.        for all gvf in autonomous switching GVFs:

20.               gvf.update(s2)

switch_list = [S1, …, SN]

active_joint_index = index of switch list

p = vector of predictions of motion of each joint

p_switch = prediction of switching to a different joint starting 

from current joint

switch()

move_joint()

auto_switch()

//  Observe EMG control and switch signals, state
//  Get predictions about joint motion from GVFs
//  Get predictions about switching from GVFs
//  If switching flag set to false
//  Update switching list
//  If joint prediction exceeds the preset threshold
//  An autonomous switch is initiated
//  Switching flag set to true
//  If a switch is initiated
//  Switching flag set to true
//  Switch to the next joint in the switching list
//  Move active joint according to EMG control signals
//  If arm has moved
//  Switching flag set to false
//  For each joint
//  Update GVF and learner using TD learning
//  For each joint
//  Update GVF and learner using GTD learning

Cyclic list of all controllable joints

Points to index of active joint in switching list

Adaptive switching predictions 

Autonomous switching predictions

Function that returns a boolean based on a switch input signal

Function that returns a signal that directs arm motion

Function that returns a boolean based on a prediction input

Figure 5.2: The autonomous switching algorithm.
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the task with the shoulder joint positioned at the limit of its angular range;

opened the gripper; moved the shoulder to the opposite side; and then closed

the gripper. This motion was repeated for a total of three minutes. The total

time spent switching and the total number of switches (manual and automatic)

were recorded by a computer connected via USB to the experimental arm. We

also recorded the number of switches and amount of time in each switching

sequence, where switching sequences were instances in which the individual

switched from one joint until a new joint was selected and then moved.

The subject performed the three-minute experiment using four different

control methods: using a non-adaptive switching order (static switching list),

using an adaptive switching order, and using an adaptive switching order com-

bined with autonomous switching (with and without feedback about upcoming

autonomous switches). Switching feedback consisted of a light vibration on the

subject’s forearm. The frequency of the vibration feedback was proportional

to the magnitude of the prediction signal for autonomous switching. An LED

also indicated to the user and the experimenter when an autonomous switch

occurred. Our hypothesis is that a user will be better able to collaborate with

an autonomous system when the system’s intent to switch is made clear to

the user via feedback. Autonomous switching creates a shared control scheme

between the system and the user. For shared control to be effective, it requires

bidirectional communication: direct communication through a user’s actions

and indirect communication of system knowledge and predictions through feed-

back (Parker et al., 2014).

Prior to beginning the experiments, the subject was given 5 minutes to

practice controlling the Bento Arm and was briefed on the nature of each

of the control methods. The subject completed a total of four trials, each

consisting of the four control methods (i.e., 16 x 3 min); in each of the four

trials, the subject performed the control methods in a semi-random order (i.e.,

the sequence was the same, but the starting method was randomized).
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Figure 5.3: The Bento Arm learns to switch autonomously during a simple
task, then unlearns switching when the task is changed. The signals in red
represent predictions about switching to a different joint; the signals in blue
represent binary switch signals; and the dotted line is the threshold above
which autonomous switching will occur.

Figure 5.4: The magnitude of the switching predictions at similar states
throughout the task. The green line represents the prediction magnitude as the
Bento Arm’s shoulder reaches the right side of its range; the red line represents
the prediction magnitude as the shoulder reaches the left side.

59



5.3 Results

5.3.1 Experiment 1

Fig. 5.3 highlights how learned switching behaviour can also be unlearned

through reinforcement. The results shown are from the simple task, in which

the subject manipulated the Bento Arm to open the gripper on one side, close

the gripper on the other side, and rotate the shoulder back and forth. The

signal in red represents a prediction of whether the individual controlling the

arm is going to switch to a different joint. Binary signals, indicating times

during the task in which the individual or the robot arm switched, are shown

in blue. The dotted line indicates the threshold that predictions in red need

to exceed for the system to switch autonomously.

An alternative view of the same experiment is seen in Fig. 5.4. Each

data point represents the magnitude of the prediction at identical states in

the task. Here we define state visits as times in which the arm is in the same

unique state (i.e., paused at the same position). Green points occur when the

shoulder reaches the rightmost side of the space, and red points occur when the

shoulder reaches the leftmost side. The dotted line represents the threshold

for autonomous switching.

5.3.2 Experiment 2

Fig. 5.5 compares the four control methods in terms of the switching sequences

generated over the 3 minute testing period for one of the trials, clearly present-

ing the onset of autonomous switching in Fig. 5.5d (results are representative

of the other three trials). Each repetition of the task required several switch-

ing sequences. Depending on the order of the joints in the list, each switching

sequence could require up to four switches (or more in the case of user error) to

select the desired joint. The results are presented as the number of switches per

switching sequence (left) and the respective amount of time required for each

switching sequence (right). On the left, the red (dark) bars show the number

of manual switches initiated by the subject, whereas the pink (shaded) bars

represent the total number of manual switches plus autonomous switches.
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Fig. 5.6 shows the average number of switches, the average time spent

switching, and the average number of times the task was repeated during the

three minutes of allotted time. In Fig. 5.6a, red bars represent the number of

manual switches made by the individual controlling the arm for each control

method. The height of the pink bars, shown in the ‘Adaptive + Autonomous’

data sets only, represents the total number of switches (combined total of

manual switches and autonomous switches). Fig. 5.6b shows the average

amount of time during the task that was dedicated to switching. The data

in Fig. 5.6c represents the average number of times the subject was able to

repeat the task fully in the given time. Times the individual completed only

part of the task were not counted.

5.4 Discussion

In this work, our first aim was to demonstrate that our control approach was

able to both learn and unlearn autonomous switching behaviours. In the left

bottom panel shown in Fig. 5.3, the arm is learning to switch autonomously

and the predictions do not rise above the threshold of 0.3. The prediction

signal exceeds the threshold for autonomous switching for the first time ap-

proximately 70 seconds from the start of the experiment, at which point the

arm begins to switch autonomously (middle bottom panel). As the second

phase of the task begins, at first the arm continues to switch autonomously

to the gripper when it reaches the right side of the space, but the user always

switches back to the shoulder joint, and therefore the prediction signal for

that side begins to decrease (right bottom panel). The user only reinforces the

switch back to shoulder three times before the prediction signal falls below the

threshold for autonomous switching to occur, and the system has effectively

“unlearned” that autonomous switch. At that point, unless the user switches

again to a different joint on the right side of the space, the arm will only switch

autonomously on the left side.

Fig. 5.4 clearly demonstrates the relative magnitude of the predictions

compared to each other in similar states. It takes four visits to the same
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(c) Adaptive + Autonomous (No Feedback)
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(d) Adaptive + Autonomous (With Feedback)

Figure 5.5: An example of switching sequences for each of the control methods
in a simple, three-minute task. The number of switches per switching sequence
are shown in red; autonomous switches are shown in pink; and the seconds per
switching sequence are shown in green.

62



Non-Adaptiv
e

Adaptiv
e

Adaptiv
e +

Autonomous

Adaptiv
e +

Autonomous

(Feedback)

0

10

20

30

40

50

60

70

80

90

N
u
m

b
e
r 

o
f 

S
w

it
ch

e
s
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(b) The mean time spent switching for each of
the control methods.
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Figure 5.6: Results for an able-bodied subject completing the 3 min task with
each of the four control methods, averaged over four semi-randomized trials.
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state for the system to exceed the threshold and learn to switch autonomously

on either side of the shoulder’s range. For the first seven state visits, the

green and the red lines overlap. This is because the maximal height of the

predictions at the left and the right are identical in the first phase, since the

subject is performing the same actions on either side. It is only after the

seventh consecutive state visit on both sides that the green line diverges from

the red line, as the second phase begins and unlearning starts to occur for the

state on the right side.

Our second aim was to demonstrate that autonomous switching can signif-

icantly reduce the number of manual switching interactions required of a user

as compared to previously presented methods. This reduction can be seen in

both Figs. 5.5 and 5.6.

Fig. 5.5a, the non-adaptive experiment, shows poor performance at the

beginning of the task and little improvement over the course of three minutes.

Throughout the task, the subject must often switch four times to select a

joint. Furthermore, sequences where the subject must switch multiple times

translate into much longer switching times, typically exceeding four seconds.

These results are also reflected in Fig. 5.6, in which more switches are made

and greater time is spent on average compared to the number of times the

subject was able to complete the task.

Unlike the non-adaptive case, in the adaptive experiment, performance can

be seen to improve with time Fig. 5.5b. The number of required switches per

switching sequence decreased as a direct result of the adaptive switching list.

After a short period of learning by the system, the subject typically did not

need to switch more than once to select a joint, and switching sequences often

lasted two seconds or less. We observed a marked improvement in Fig. 5.6 as

well, where a decrease in switches and time resulted in the subject completing

more repetitions of the task. These results are consistent with the adaptive

switching results presented in our prior work (Edwards et al., 2015).

Figs. 5.5c and 5.5d demonstrate what happens when autonomous switching

is used in combination with adaptive switching. As a key result, autonomous

switching was found to significantly reduce the number of manual switches re-
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quired of the user—our primary measure of success. In the first case, without

feedback, the subject was observed to make more errors when switching com-

pared with the second case; these errors often arose out of uncertainty over

whether the system was going to switch autonomously or not. The amount

of time spent on each switching sequence is also higher. As a result, the sys-

tem only switched autonomously once in the three-minute time frame. By

contrast, when the user received vibration feedback of increasing vibration in-

tensity as the system’s prediction rose, autonomous switching dominated the

latter part of the experiment. Overall performance was better than that of

adaptive switching when averaged across the three-minute period in terms of

significantly fewer manual switches required of the user. For example, in Fig.

5.5d, there were a total of 12 autonomous switches made and a corresponding

decrease in the average time spent on each switching sequence. We expect

that further improvements in communication between the user and their de-

vice will result in stronger correlations between reduced switching interactions

and saved time.

In this work, we implemented a simple task as a first demonstration of

autonomous switching. The simple task described allowed us to determine

the effectiveness of autonomous switching before scaling up to more complex

tasks such as the box-and-blocks task (Mathiowetz et al., 1985). In this chosen

task, autonomous switching with feedback successfully decreased the number

of manual switches required while increasing the number of times the task was

completed. However, on average, the amount of time spent switching was on

par with adaptive switching. Of note, the participant in our second experiment

reported that once the system learned to switch consistently, feedback was less

essential to the task because he could accurately anticipate when the robot arm

would switch for him. This suggests that with practice, a subject will build

up reciprocal predictions about the system’s behaviour, allowing the subject

to spend less time verifying the choices of the system. We also anticipate that

autonomous switching will result in greater time savings and less cognitive

demand for longer, more complex tasks, as both user and machine learn to

share control more effectively (e.g., in situations where precision is important,
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or where it is hard for the user to quickly decide on appropriate actions).

The system was able to build up predictions relatively quickly in the task

with the Xbox controller compared with the similar task involving EMG con-

trol. We have observed that myoelectric control adds a level of noise that re-

duces the overall effectiveness of autonomous switching. With different modes

of control (e.g., a button or mechanical toggle) that have reduced intrinsic

noise, we have observed increased performance on autonomous switching tasks.

A possible explanation is that joystick control results in more precise move-

ments and requires fewer fine motor adjustments from the user to achieve

the intended arm position. Although shared control has potential rewards

in human-machine interaction, in practice, autonomy and the way in which

humans use machine autonomy is imperfect. For this reason, we have demon-

strated the ability of the system to unlearn and reverse learned autonomy,

which reverts control to the user.

There are numerous examples of switching in assistive devices and devices

for rehabilitation. For example, exoskeletons and powered orthotics can have

multiple modes of operation or gait patterns for different terrains (Tanabe

et al., 2013), and are strong candidates for the application of adaptive and

autonomous switching. We believe our approach will transfer well to other

switching-based domains.

5.5 Conclusions

This paper presents the first demonstration of real-time learning and unlearn-

ing of autonomous switching for prosthetic control. Our results illustrate how

autonomous switching in combination with adaptive switching and feedback

can reduce the number of manual switches required of a user while operat-

ing a myoelectric arm. This points to potential time savings in more com-

plex tasks and a reduction in a user’s cognitive load while using a prosthesis.

Autonomous switching adds impact to adaptive switching, and promises to

increase its practical utility in multiple domains.
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Chapter 6

New Results from Autonomous
Switching

6.1 Introduction

This chapter represents an addition to the work presented in the previous

chapter. In preliminary experiments using the simple task (Chapter 5), au-

tonomous switching decreased the number of switches made by the user (man-

ual switches). In the experiment described below, we chose a more challenging

task, and once again assessed the performance of autonomous switching with

three subjects.

6.2 Methods

Three able-bodied subjects controlled the Bento Arm using EMG in a modified

box-and-blocks task. Five balls were placed on one side of the divided box,

and subjects were asked to pick up and drop each ball on the other side of the

divider, as in Chapter 3. Successfully picking up and dropping all five balls

comprised one iteration, and each iteration was repeated a total of 10 times.

Subject 1 and Subject 2 had some prior experience controlling a myoelectric

arm. Subject 3 was the experimenter, and an expert myoelectric robotic arm

user. The third subject performed the task twice: once using EMG control

and once using the joystick setup described in the previous chapter.

Three control methods were used: non-adaptive switching, adaptive switch-

ing, and adaptive switching combined with autonomous switching. For this
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last control method, subjects were always given vibration feedback (as de-

scribed in Chapter 5) to indicate an autonomous switch would occur. Prelim-

inary data suggested that starting with the autonomous switching method is

more difficult than starting with other methods; as a result, for subjects who

had no prior experience with the system, we chose to stage the experiment in a

way that was closer to the proper training environment, where subjects built up

to more autonomous paradigms (adaptive switching and autonomous switch-

ing) after experiencing the current clinical default paradigm (non-adaptive

switching). Thus, Subjects 1 and 2 completed the control methods in the or-

der listed above. Subject 3, being familiar with the system, performed the task

in the order of autonomous switching, adaptive switching, and non-adaptive

switching. All subjects were given time to become familiar with each method

prior to starting experiments.

This experiment was similar to the experiment described in Chapter 3,

in which we compared subjects’ performance on adaptive switching and non-

adaptive switching using the modified box-and-blocks task. In this experi-

ment, we tested an additional control method (autonomous switching with an

adaptive switching list) and doubled the length of the task to 10 iterations.

Subjects tested each control method once, without repeating trials.

Adaptive and autonomous switching used the same TD(λ) and GTD(λ)

algorithms as described in the previous chapter. However, the function ap-

proximation parameters of autonomous switching were altered for this more

challenging task. All state inputs (except for the moving EMG averages) were

instead each represented in a single tile and overlapped 40 times. The moving

averages of both EMG signals were tiled into 6 bins.

6.3 Results and Discussion

Figs. 6.1 and 6.2 show the number of switches and time spent per iteration

of the box-and-blocks task (for Subjects 1 and 2, respectively). Figs. 6.3 and

6.4 show the time and iterations for Subject 3 performing the task using EMG

control and joystick control, respectively. The dark red bars in each of Figs.
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(a) The number of switches per iteration of the box-and-blocks task. Three types of control
methods were tested: non-adaptive (dark red), adaptive (light red), and adaptive with au-
tonomous switching. Autonomous switches are shown in dark pink and manual switches are
shown as light pink.

1 2 3 4 5 6 7 8 9 10
Iteration

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

M
in

u
te

s

Non-Adaptive
Adaptive
Adaptive + Autonomous

(b) The time (in minutes) spent on each iteration of the box-and-blocks task. The control
methods are represented as follows: non-adaptive (dark green), adaptive (medium green),
and adaptive with autonomous switching (light green).

Figure 6.1: Number of switches and time per iteration for Subject 1.

69



1 2 3 4 5 6 7 8 9 10
Iteration

0

50

100

150

200

250

S
w

it
ch

e
s

Non-Adaptive
Adaptive
Autonomous
Manual

(a) The number of switches per iteration of the box-and-blocks task. Three types of control
methods were tested: non-adaptive (dark red), adaptive (light red), and adaptive with au-
tonomous switching. Autonomous switches are shown in dark pink and manual switches are
shown as light pink.
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(b) The time (in minutes) spent on each iteration of the box-and-blocks task. The control
methods are represented as follows: non-adaptive (dark green), adaptive (medium green),
and adaptive with autonomous switching (light green).

Figure 6.2: Number of switches and time per iteration for Subject 2.
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(a) The number of switches per iteration of the box-and-blocks task. Three types of control
methods were tested: non-adaptive (dark red), adaptive (light red), and adaptive with au-
tonomous switching. Autonomous switches are shown in dark pink and manual switches are
shown as light pink.
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(b) The time (in minutes) spent on each iteration of the box-and-blocks task. The control
methods are represented as follows: non-adaptive (dark green), adaptive (medium green),
and adaptive with autonomous switching (light green).

Figure 6.3: Number of switches and time per iteration for Subject 3 performing
the task with EMG control.
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(a) The number of switches per iteration of the box-and-blocks task. Three types of control
methods were tested: non-adaptive (dark red), adaptive (light red), and adaptive with au-
tonomous switching. Autonomous switches are shown in dark pink and manual switches are
shown as light pink.
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(b) The time (in minutes) spent on each iteration of the box-and-blocks task. The control
methods are represented as follows: non-adaptive (dark green), adaptive (medium green),
and adaptive with autonomous switching (light green).

Figure 6.4: Number of switches and time per iteration for Subject 3 performing
the task with joystick control.
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6.1a, 6.2a, 6.3a, and 6.4a represent the number of switches made by the subject

in each iteration of the non-adaptive control method and the light red bars

represent switches made in the adaptive method. Dark pink bars represent

the number of autonomous switches made by the system, and the light pink

represents the number of manual switches made by the user. The dotted line

denotes the minimum number of switches (75 switches) required to complete

the task given a non-adaptive switching list. The dashed line shown at 35

switches represents the best possible outcome for an adaptive switching list—

it is the minimum number of switches required once the system has learned

the optimal switching list for the given task, assuming no errors on the part

of the user.

In each of Figs. 6.1b, 6.2b, 6.3b, and 6.4b, dark green is the total amount

of time (in minutes) in each non-adaptive iteration and medium green is the

time in each adaptive iteration. Light green bars represent the time spent on

iterations that used the adaptive switching list with autonomous switching.

Figs. 6.1, 6.2, 6.3, and 6.4 demonstrate the effect of autonomous switching

with feedback on a more complex task (i.e., box-and-blocks). In Chapter 3, we

presented results from adaptive switching on the same modified box-and-blocks

task, and specified the optimal number of switches for adaptive switching.

An adaptive switching list requires the user to manually switch their control

between joints at least 35 times during a single iteration. In Fig. 6.1a, by

the second iteration, fewer manual switches are required when autonomous

switching is used compared with the non-adaptive and the adaptive switching

list. Furthermore, during several iterations, the number of manual switches

falls below the optimal for adaptive switching (35 switches). This implies that,

for some users, autonomous switching can decrease the number of interactions

between a user and their device.

Results from Subject 2 show that autonomous switching does not save

manual switches for all users. Furthermore, compared to adaptive switching

by itself, autonomous switching increased the overall number of switches (the

combination of manual and autonomous switches). A possible explanation

for this increase is that occasionally, autonomous switches were made at the
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wrong time, and had to be corrected by the user. Both Subject 1 and Subject

2 reported that the arm switched autonomously at times they did not expect.

For example, while controlling the shoulder joint, the arm will learn to switch

automatically when motion has stopped and the hand is in line with a ball.

This caused some frustration for users when they had simply paused motion to

make fine adjustments in the arm’s position. Although the arm is learning a

way of behaving that is correct in one context, there is likely a need to provide

the system with a greater ability to distinguish between these different, but

similar, situations: a user stopping the arm precisely in line with a ball; a

user stopping the arm directly in line with the position of a ball that has been

moved (either to the other side of the box or nudged out of place); and a user

briefly stopping the arm’s motion near a ball to make small motor adjustments

to the joint they are currently controlling.

Although autonomous switching resulted in fewer manual switches in some

instances, the corresponding total time was not always reduced. During exper-

iments, we observed that users would often wait for the arm to switch if they

anticipated an autonomous switch (based on vibration feedback or previous

switches in the same context). Furthermore, in some instances the user had

to correct poorly timed autonomous switches by switching an additional four

times, back to the joint they had been using. This correction causes both an

increase in the number of manual switches and the total time.

In Fig. 6.3, Subject 3 showed a significant decrease in the number of manual

switches during the autonomous switching part of the task, often having to

manually switch fewer than 5 times. Results from the same task using joystick

control reflect a similar decrease in switches as well. By the second or third

iteration in both of the Subject 3 data sets, the number of manual switches

had fallen below the dashed line. In the EMG-controlled experiment, while

the iteration time of autonomous switching was not as high as that of non-

adaptive switching, it was more or less equivalent to the time spent doing

adaptive switching. However, the results from Fig. 6.4b with joystick control

showed an increased amount of time needed in autonomous switching. It is

interesting to note that the joystick control task reduced the overall time in
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each of non-adaptive, adaptive, and autonomous switching. Although joystick

control offers smoother movements in general, it is possible that EMG control

outperformed the joystick because joystick control facilitates time savings in all

three control methods. Fatigue also appears to have played a role in the EMG-

control task, and is likely a factor in the significant increase in the number of

minutes per iteration at the end of the non-adaptive task.

Although autonomous switching has shown promise in reducing the num-

ber of switches and time spent on the box-and-blocks task, it has not shown

consistent benefits for all Bento Arm users. It is clear that some challenges

remain to be addressed, particularly the challenge of better differentiating

between states in which autonomous switches should occur.

6.4 Conclusions

In this work, we compared autonomous switching with the non-adaptive and

adaptive methods of switching, continuing work from the previous chapter by

adding to the complexity of the task. The next step in this work will likely

be to address the present limitations of autonomous switching, modifying our

current approach to make control using autonomous switching easier and more

functional.
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Chapter 7

Discussion and Future
Directions

The work in this thesis involved three main contributions: the application

of an algorithm, adaptive switching, to optimize the gated control method

of driving a myoelectric arm; the development of unlearning as a means for

the user to maintain control of their device; and the augmentation of adaptive

switching with autonomous switching. We discussed two main aims in the first

chapter. The first was to improve gated control of a myoelectric arm using

RL. The second was to find novel algorithms that could be applied in other

settings. Here, we discuss the significance of our contributions with respect

to these aims. We also discuss the limitations of the work and possible future

extensions.

7.1 Significance and Discussion of

Contributions

7.1.1 Addressing User Needs

As discussed in Chapter 2, there are three main causes for the rejection of

powered prosthetic limbs: lack of intuitive control, lack of function, and lack

of feedback. In our approach for improving gated control, we have tried to

address each of these concerns such that the requirements of persons with

amputations are met, and to ensure future adaptations of this work could be

deployed in clinical settings.
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Figure 7.1: A comparison of non-adaptive switching, adaptive switching, and
adaptive switching with autonomous switching using a robot arm with four
joints. In this example, a subject is given a simple manipulation task that
requires opening/closing the hand, rotating the shoulder, flexing/extending
the wrist, and rotating the shoulder again. With the fixed joint list used
in non-adaptive switching, the user would need to manually switch 8 times
to complete the task. In comparison, after learning by the system, adap-
tive switching would require only 4 manual switches. Furthermore, adaptive
switching with autonomous switching should require no manual switches (the
system would perform all 4 switching actions automatically). In both adap-
tive switching cases, the list of joints is contextually re-ordered, resulting in
a more efficient switching list being updated and presented to the user. Solid
lines represent manual (user) switches, and dashed lines represent autonomous
(system) switches.
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Results from adaptive switching have shown a decrease in experimental

time and number of switches in multiple experiments, particularly for experi-

enced subjects. While improvements in these areas are not necessarily direct

evidence of a more intuitive user experience, overall, subjects reported greater

ease of use for adaptive switching than for non-adaptive switching. With adap-

tive switching, we also give users access to a larger number of functions than

would be possible with typical gated control schemes. Although we limited the

number of controllable joints in each of our experiments to no more than five,

with additional learning time, adaptive switching could conceivably be applied

to myoelectric arms with many more functions, comparable to the number of

functions (i.e., grip patterns) offered by many commercial devices. All of our

experiments incorporated feedback (visual, audio, or vibrotactile) to clearly

communicate to the user the results of learning and the timing of automated

actions.

7.1.2 User Trust

We believe that the predictability of the autonomy played a pivotal role in

users’ trust of the myoelectric arm. As subjects became more familiar, both

with their execution of a task and with the role of machine learning as it

adapted to a task, they often came to trust the autonomy more. There were

certain regions of the task space in particular, in which the learning system

performed with close to 100% prediction accuracy; in these regions, it was clear

from subjects’ behaviour that they felt less need to monitor the myoelectric

arm.

An example of this behaviour occurred consistently during the modified

box-and-blocks task after learning had occurred. Upon grasping a ball with

the gripper and moving it across the divider, users would quickly switch to the

next joint in the list; then, without waiting for auditory confirmation that the

system had switched to the desired joint (the gripper), they would immediately

move the newly active joint, thereby releasing the ball as intended. This

suggested a certain level of trust in the adaptive switching list—that it had

successfully learned and maintained accurate predictions about joint motion.
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A similar behaviour was observed in the experienced user when performing

the box-and-blocks task with autonomous switching. After the arm had con-

sistently switched by itself in similar situations, the user began to anticipate

autonomous switches, often moving the next joint prior to hearing the cue

alerting them to the switch.

7.1.3 Unlearning and Feedback

The effect of user trust on the performance of a task hints at the importance

of the user-centred approach to the development of new control methods. This

includes giving the user sufficient ability to correct their device and providing

them with ample feedback about the device’s autonomous actions.

The unlearning aspect of our experiments was an important step toward

a functional and adaptable autonomous system. In adaptive switching, the

system never initiates actions for the user; instead, predictions serve as sugges-

tions for a more context-appropriate switching order. In autonomous switch-

ing, however, sufficiently high predictions lead to the system initiating switch-

ing actions of its own accord. Unlearning ensures that only switching actions

that are acceptable to the user are given credit. Extraneous autonomous

switches that are corrected by the user will gradually decrease the prediction

magnitude, keeping the user in full control while simultaneously decreasing

the switching cost in times of high system confidence.

From experiments in Chapter 5, we found that shared control without

feedback yielded much worse performance than the same experiments with

feedback. This is not the first study to directly use predictions as feedback.

Our work follows a previous study in which learned predictions acted as feed-

back about anticipated robot arm collisions within a workspace (Parker et al.,

2014). The learning system contains key forecasts about future events that

should be communicated to the user, but which are often used only for con-

trol. We believe that communication in this way closes the loop between the

user interacting with the machine learning system, and this is reflected in the

increased performance from both studies.
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7.1.4 Adaptations

The results of autonomous switching in both simple and more complex tasks

point to differences in the way subjects approach tasks. Users who have an

understanding of GVFs and our specific learning system tend to perform ac-

tions that will benefit learning, allowing the machine to build up expectations

about their behaviour, faster. For example, expert users will often move the

myoelectric arm in repeatable ways, taking advantage of the way the task

space is partitioned into different states. During adaptive switching experi-

ments, the same overarching goal (move the ball to the other side of the box)

could be accomplished by selecting joints each time in a different sequence.

The expert users were more likely to accept the first joint suggested to them

by the learning system, even if it was not what they would have chosen origi-

nally. In autonomous switching tasks, expert users compensate for unintended

autonomous switches with smoother, precise arm motions. These are exam-

ples of a mutual adaptation that occurs: while the system learns about user

behaviour, users will also adapt to the way the machine learns. While this

mutual adaptation is beneficial to performance, it is uncertain whether less

experienced users will adapt in similar ways.

7.2 Limitations of the Current Work

7.2.1 Study Population

The local population of amputees available to participate in experimental trials

is relatively small. Consequently, for most of our experiments, we recruited

able-bodied subjects. We expect the performance of non-amputee subjects to

be similar to that of amputee subjects that have equivalent experience with

myoelectric control. In addition, experiments were often treated as case series

or individual case studies to highlight specific differences in task performance.

However, this work warrants a more comprehensive study involving a larger

sample of amputee and able-bodied subjects.
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7.2.2 Challenges in Autonomous Switching

Although autonomous switching has been shown to reduce a user’s manual

switches, one limitation that remains to be addressed is the unintentional

reinforcement of switches in specific situations. When the learner performs

actions the user does not expect, trust between the user and the system be-

gins to degrade. Currently, the system is unable to distinguish between certain

key contexts; for example, between times when a ball is in its starting position

and times when it has already been moved. Although similar, these contexts

demand altogether different switching behaviours from the autonomous sys-

tem. In the first case, autonomous switching is a desired behaviour; in the

second case, the user may not want to immediately switch to a different joint,

and an autonomous switch in such a situation would serve only to frustrate

the user. One potential solution is to give the learning system additional state

information. Visual information from a camera, such as colour averaging or

object recognition, may be valuable for tasks like the box-and-blocks task, in

which contextual cues can be learned from colour and shape.

In the second highlighted case above, the user may be unable to correct the

system when it switches unexpectedly. Often, an autonomous switch occurs

at the same instant the user resumes motion of their prosthesis; to the learn-

ing system, this signifies the user has “accepted” the switch to a new joint,

and therefore the switch is unintentionally reinforced, despite being incorrect.

While additional state information may indeed help solve this problem, an al-

ternative approach may be to introduce a suitable delay after an autonomous

switch that would give users time to realize and react to a change in the ac-

tive joint. During this brief delay, which could be determined empirically, the

user would be able to move the arm, but this movement would not serve to

reinforce the switch. Another approach to the same problem would be a delay

which prevents the arm from moving altogether.

We used a simple threshold as the trigger for autonomous switching. How-

ever, different measures of confidence may be more effective, and provide an-

other solution to autonomous switching and the switches that originate from
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an inability to differentiate between specific contexts. A system that measures

variance, in addition to a threshold, may be more appropriate. A high variance

in the cumulant (switch signal) of a given state may be an indication that the

system should not switch for the user (Sherstan et al., 2016).

One observation that has frequently emerged over the course of experi-

ments involving autonomous switching is that there is a marked difference in

performance between EMG and joystick control. EMG signals have more in-

trinsic noise than mechanical toggles, and as such, myoelectric control requires

a learning system that is robust to occasional imprecision in arm motion that

results from noise. One solution to counter the effects of noise may be to intro-

duce a separate learning agent that adjusts EMG parameters with increased

noise induced by muscle fatigue and other factors. Another possibility may be

to use two separate thresholds for EMG control: one at the level of initiating

arm motions, and one at the level of terminating arm motions.

Despite some remaining challenges, this work offers promise for reducing

the time and cognitive cost to switching. Autonomous switching, with some

modifications, therefore merits further investigation as an extension to the

adaptive switching control method.

7.2.3 Tasks

One criticism of the learning system often stems from the fact that in our

experiments, the tasks given to subjects are typically repetitive in nature. The

simple task described in a few of our studies involved repeating simple joint

actions as many times as possible. Even the box-and-blocks task, although

not as strictly repetitive, involves many iterations of similar series of actions.

The assessment that the system learns from prior experience and therefore

requires some repetition is correct. However, on a larger scale, everyday tasks

and actions are typically repetitive to some degree. Putting dishes away, for

example, requires similar gross arm movements—moving from the dish rack, to

the cupboard, and back again. Furthermore, there is benefit to a system that

learns from repetition, in that it may reduce the burden and fatigue during

some of the most repetitive (and thus switching intensive) tasks in daily life.
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7.3 Future Work

Future investigations will continue to test adaptive and autonomous switch-

ing in more challenging task domains, incorporating some of the changes to

autonomous switching outlined above. We will also test these algorithms on

a larger population of amputee and able-bodied subjects to gain more insight

into performance averages. In this work, we limited the workspace to the ta-

ble top; however, the Bento Arm was also designed to be a wearable system.

Therefore, in future experiments, amputee subjects may be asked to perform

tasks while wearing the arm.

We also plan to integrate more sensors into the robotic arm, and use these

added signals to bolster the stream of information provided to the learner. In

addition, we will increase the number of feedback channels available to the

user. For example, it may be useful to communicate not only when a switch

will happen, but also which joint will become active upon switching. This

information could be conveyed to the user visually, through LEDs embedded

in the joints of the Bento Arm.

Ultimately, we would like to test these algorithms on myoelectric arms that

are capable of switching between various grip modes, as in many commercial

prostheses. This work may also be applicable to other switching-based control

systems. Recent work has been done by Tanabe et al. on powered orthotic de-

vices that are capable of operating in different modes, which users can actively

switch between with a mechanical trigger (Tanabe et al., 2013). Autonomous

switching has potential utility in a similar system, learning context-appropriate

times to switch between modes of operation on behalf of the user.
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Chapter 8

Conclusions

State-of-the-art myoelectric arms offer numerous grip actions that can be in-

dividually controlled by amputees. However, a major constraint that leads to

marked degradation of performance is the limited number of intuitive myoelec-

tric signals that can be used to control those myoelectric prostheses. There is

a significant mismatch between the number of controllable prosthesis functions

and the possible EMG control sites on an amputee’s residual limb. This is a

barrier that seriously hinders an amputee’s ability to use their prosthesis to

their fullest potential.

A common approach that gives amputees access to multiple functions is

called gated, or switched control. Using gated control, users select the function

they wish to control by switching through a list of options. However, gated

control cannot provide amputees with access to more than three or four possi-

ble functions without significant costs to switching time and mental effort. In

this work, we have tried to address the limitations of the gated control method

through real-time machine learning. Specifically, we applied RL techniques to

myoelectric arms, with the goal of creating an arm that is capable of shar-

ing the control burden with users by learning about and adapting to users’

needs during continued use. To this end, we developed two algorithms that

assist with the control of a myoelectric robot arm: adaptive switching and au-

tonomous switching. During adaptive switching, the machine uses contextual

factors to predict which prosthetic function a user intends to use next. Dur-

ing autonomous switching, the machine learns predictions about when a user
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intends to switch to a different function, then begins to initiate switches for

the user once it reaches a pre-established level of confidence in its predictions.

We carried out several studies, testing these algorithms against conven-

tional gated control, which we call non-adaptive switching. We compared

results from subjects performing tasks multiple times using different control

methods. We found that in experienced users, adaptive switching can re-

duce the task time by approximately 20% compared with non-adaptive switch-

ing. Furthermore, adaptive switching reduces the number of switches by half.

When combining adaptive switching with autonomous switching, we see sim-

ilar time savings for experienced subjects, and an additional reduction in the

number of switches made by the user (the number of manual switches made

during autonomous switches amounted to less than half the number of switches

required during adaptive switching). In the process of developing these alter-

native switching methods, we also provided the learning system with a means

of unlearning autonomous behaviour.

We believe this work was successful in addressing a major challenge of my-

oelectric arm use and the gated control method specifically. The adaptive and

autonomous switching methods increase the number of accessible prosthesis

functions while reducing the overall switching cost to the user. In addition,

we implemented a more adaptive autonomy by giving the system the ability

to unlearn with changes to the environment or user goal. There are still some

limitations to be overcome; in particular, autonomous switching does not cur-

rently differentiate between certain essential contexts, occasionally causing the

arm to switch when a switch is unsolicited. In the future, we will continue to

enhance these RL algorithms, assessing their performance in more in-depth

studies and more demanding user tasks.
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