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Abstract

Facial expressions and other body language are important for human commu-

nication. They complement speech and make the process of communication

simple and sustainable. However, the process of communication using existing

approaches to human-machine interaction is not intuitive as that of human

communication. Specifically, the existing approaches to human machine inter-

action do not learn from whatever subtle non-verbal cues produced by a user.

Many of the existing approaches map body language cues to instructions or re-

wards and use them to train a machine. These mappings are not learned from

ongoing interactions and are assumed to be defined by some external source.

As a consequence, the communicative process through these approaches can

cause significant cognitive load on the user. This is an important problem that

needs to be addressed if we are to amplify our existing cognitive and physical

capabilities through intelligent machines. Towards addressing this, we intro-

duce our idea that allows machines to learn from whatever subtle cues people

produce during the process of interaction. Particularly, the agent learns a value

function that maps the user’s non-verbal cues to later rewards. By using this

value function, the user can teach their agent to complete a task according to

their preferences, and consequently maximize their satisfaction. We demon-

strate this by training an agent using facial expressions. Furthermore, we

show that these learned value functions can be successfully transferred across

tasks. In conclusion, our approach is the first that allows people to teach their

machines using whatever subtle cues they produce and could take us far in

achieving sustainable forms of human-machine interaction.
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Chapter 1

Beyond Clever Hans

The overarching goal of this thesis is to introduce an approach to human-

machine interaction, where the machine learns from whatever subtle non-

verbal cues that are produced by the user during the process of interaction.

We begin by introducing the story of Clever Hans, which is a popular example

that illustrates the role of body language in communication. Subsequently,

we broadly discuss how existing approaches use body language for human-

machine interaction. Finally, we introduce our approach and highlight our

contributions in this thesis.

1.1 Horse that Answered Questions

Wilhelm von Osten was a math teacher and an amateur horse trainer. He

owned a horse called Hans. In the year 1891, von Osten displayed his horse in

public and claimed that he had taught his horse to perform simple arithmetic

calculations, tell time, and keep track of the calendar. Hans answered many

of the questions posed by the questioner, and over time, became a public

sensation in the late twentieth century. As a result of this popularity, the

horse was called “Clever Hans” and was reported by the New York Times in

1904.

The significant public interest in Clever Hans motivated the German board

of education to appoint a commission to investigate whether the horse pos-

sessed intelligence. The commission recruited a German psychologist named

Oskar Pfungst, who conducted a substantial number of trials with Hans and
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discovered that Hans got the right answer only when the questioner knew what

the answer was. More importantly, Hans needed to see the questioner while

answering their questions.

Pfungst then studied the behavior of the questioner while the horse was

answering their question and reported his findings (c.f. Pfungst, 1911). He

discovered that the horse’s behavior was influenced by subtle and unintentional

cues. Specifically, as Hans approached the correct answer the questioner’s

posture and facial expressions changed in ways that were consistent with an

increase in tension, which was released when Hans made the final tap with its

hoof. This change in body language served as a useful cue for the horse to

stop tapping its hoof.

Hans learned when to stop tapping its hoof by observing the subtle non-

verbal cues of the questioner. This ability of the horse was wrongly attributed

to be a consequence of possessing intelligence. While training his horse, von

Osten rewarded the horse whenever it answered a question correctly which

reinforced this process of answering from the questioner’s subtle cues.

1.2 Human-Machine Interaction using Body

Language

The ideal approaches to human-machine interaction should allow users to com-

municate naturally as they would do with their peers. This would make the

process of interaction between people and machines to be sustainable and

scalable. As an important step towards achieving this ambitious goal of ideal

human-machine interaction, we need to design approaches that allow machines

to learn from whatever non-verbal cues produced during the interaction, sim-

ilar to how the horse picked on unintentional non-verbal cues of its questioner

for answering their questions.

In human communication, the subtle non-verbal cues that we produce un-

intentionally influences the observer’s behavior towards us. This is a natural

process and is well-studied in psychology (De Gelder, 2006; Pezzulo et al., 2013;

Jack & Schyns, 2015) and in affective neuroscience (Adolphs, 2002; Whalen et
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al., 2013). Specifically, these body language cues have communicative value to

their observers and allowing the machines to learn from our subtle non-verbal

cues seems to be a natural direction to pursue in human-machine interaction.

The existing approaches to human-machine interaction do not use body

language as training information. Specifically, these approaches assume that

the body language cues and their meaning are given to the machine from

some external source, instead of learning them from ongoing interactions. The

existing approaches use non-verbal cues for either instructing or rewarding

the machines. Particularly, the system designer maps body language cues to

instructions which the machine performs on observing the corresponding cue

from the user. Some approaches also map body language to rewards which are

provided to the machine.

Using body language as instructions or rewards requires the user to trans-

late their non-verbal cues to effectively teach the machine according to their

preferences. The approaches that use body language as instructions or re-

wards assume that people produce similar body language during interaction.

This is not a reasonable assumption to make because body language differs

significantly with people, usually depending on their situations and cultural

norms (Roselli & Ardila, 2003; Yammiyavar et al., 2008). Requiring the user

to actively translate their cues in order to meet the machine’s design can cause

significant cognitive load on the user, especially in real-world human-machine

interaction tasks (Hollender et al., 2010; Fridman et al., 2017; Mathewson &

Pilarski, 2017). As a consequence of these reasons, the existing approaches are

unsustainable and leads to unsuccessful human-machine partnerships.

1.3 Moving Beyond Clever Hans

In this thesis, we introduce a human-machine interaction approach that is

inspired from Clever Hans and investigate whether this brings us closer towards

natural human-machine collaboration.

In human-machine interaction domains, people naturally produce subtle

non-verbal cues to indicate their satisfaction towards their machines. In the
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approach that we introduce here, the machine learns to associate their users’

subtle cues with their satisfaction and subsequently uses this to learn an ap-

propriate behavior in a given task. More specifically, the machine learns an

evaluation function that predicts its user’s satisfaction from their non-verbal

cues. By using these predictions, the machine learns to adapt its behavior in

a given task according to its user’s preferences and, as a result maximize user

satisfaction. Here, we view the machine’s performance in a task as a measure

of user satisfaction.

We formalize and implement our approach using reinforcement learning.

Particularly, from reinforcement learning, we use techniques to learn value

functions. In our approach, the machine learns a value function that associates

user’s non-verbal cues with their satisfaction, which is measured in terms of

their occasional explicit feedback. The machine predicts its user’s satisfaction

using this value function, and as a result the machine perceives a feedback

signal in the form of body language cues. This evaluative signal drives the

machine’s behavior within a given task according to their user’s preferences,

thereby maximizing their satisfaction.

As opposed to existing approaches that use body language in human-

machine interaction, our approach does not require the system designer to

define their meaning to the machine. Specifically, the machine learns the

meaning of the various non-verbal cues directly form the ongoing interactions

with its user. Another important distinction of our approach is that the ma-

chine learns from ongoing interactions to predict user’s satisfaction directly

from their body language and does not require a supervised training dataset.

This is more general than mimicking Clever Hans to a human-machine

interaction setting, because Hans only learned when to stop tapping its hoof

from subtle cues as opposed to learning how much the user was satisfied. More

importantly, by learning to predict user satisfaction, our approach allows the

machine to perform tasks that are truly important to the user.

As our approach relies on whatever subtle cues produced during the process

of interaction, it does not require the user to translate or exaggerate their

non-verbal cues. The approach learns from whatever subtle non-verbal cues
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produced by the user while interacting with their machine. We believe this to

be the first work in directly addressing the overall goal of this thesis, where

an implemented system learns from people’s body language, without involving

much effort.

1.4 Outline

Here, we give a brief outline for the rest of this thesis:

Chapter 2 introduces a few concepts of reinforcement learning that are used

in Chapters 4 and 5.

Chapter 3 presents a background on existing methods used for human-

machine interaction.

Chapter 4 introduces our prospective body language approach which allows

the users to teach their machines using whatever subtle body language cues

that are produced during the process of interaction. This chapter also grounds

our contribution with the existing approaches that allow users to teach their

machines using body language. This chapter is the fundamental contribution

of this thesis.

Finally, in Chapter 5 and 6, we present experimental results of our approach

of learning from prospective body language that is implemented using two

popular reinforcement learning techniques. The results show that our approach

can improve over a conventional user-interaction agent in difficult and changing

tasks.

Lastly, in Chapter 7, we discuss few common concerns related to our ap-

proach and present future directions of research.

1.5 Contributions

The key contributions of this thesis are summarized as follows:

• We introduce our interactive machine learning approach that allows peo-

ple to teach machines using subtle body language cues, without involving
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much effort. We view this as the initial steps towards natural and intu-

itive human-machine collaboration.

• We further develop our approach and implement it using two different

reinforcement learning techniques and empirically evaluate them on a

simulated grip-selection domain.

• We discuss extensions to our approach as potential future directions

towards achieving simple human-machine interactions.
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Chapter 2

Background

In this chapter, we introduce and define the different concepts from reinforce-

ment learning, along with the necessary algorithms, that are required for un-

derstanding this thesis.

2.1 The Reinforcement Learning Problem

The reinforcement learning problem involves an agent that continually inter-

acts with its environment in order to achieve a certain goal, where this goal is

defined in terms of a reward signal.

Figure 2.1: The Reinforcement Learning problem: Interaction between an
agent and its environment

A simple representation of the RL problem is shown in Figure 2.1. At each

time step, the agent observes its current state, then chooses an action that

influences the environment. In response, the environment provides a reward

and a next state to the agent. This process repeats continually where the

agent interacts with its environment. The objective for the agent is to learn

and select actions so as to maximize this numerical reward signal.
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A reinforcement learning problem is represented as a Markov Decision Pro-

cess (MDP) with a finite set S of N states and a finite set A of actions, with

a discount factor of γ ∈ [0, 1]. At each time step t, the agent observes its

current state St ∈ S where S is a set of all possible states and |S| = N is the

total number of states available in the environment. After observing its cur-

rent state St, the agent chooses an action At ∈ A. This action influences the

environment in producing a scalar reward Rt+1 ∈ R. This reward signal Rt+1

is generally a function of the agent’s current state St and action At. Following

this reward, the agent transitions into the next state St+1 ∈ S and this entire

interactive process repeats continually.

The expected value of this reward signal r(s, a) is defined as the the average

value of rewards observed at a particular state s after taking a particular action

a:

r(s, a) = E
[
Rt+1|St = s, At = a

]
The environment, after receiving an action a from the agent, transitions to

the next state s′ from the current state s where this transition is defined by a

probability function p(s′|s, a). Specifically, this transition probability function

gives the likelihood of the agent transitioning into a state s′ from the current

state s, after picking an action a.

p(s′|s, a) = Pr
{
St+1 = s′|St = s, At = a

}
It is important to note here that the transition probability p(s′|s, a) and

the reward function r(s, a) are specific to an environment and are unknown to

the learning agent.

The goal for a reinforcement learning agent is to maximize the scalar re-

wards it receives over time, through ongoing interactions in the form of state

observations and actions with the environment. In order to achieve this, the

agent needs to learn to pick actions that eventually produce higher rewards

and map these actions with their current situations (i.e. the states). This

association of actions to states is formally called as policy and is denoted as
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π(a|s). The policy gives the likelihood of picking an action a on observing a

state s.

Finally, γ ∈ [0, 1] is a discount parameter representing the relative impor-

tance of future rewards compared to the importance of the immediate reward.

The goal for the agent is to maximize this discounted sum of rewards that it

receives over time by learning an action-selection policy π. This discounted

sum of rewards is called as return, which is formally defined as:

Gt =
∞∑
i=0

γiRt+i+1

When γ is closer to 0, the return is computed by assigning a higher weight

to immediate rewards rather than those that are received later in the future. In

other words, when the discount factor is close to 0, the agent learns a myopic

policy that maximizes immediate rewards. Setting a discount factor closer to

1 allows the agent to learn a policy that maximizes future rewards.

2.2 Value Functions

A value function is the fundamental idea in reinforcement learning (Sutton &

Barto, 2017). The central idea behind a value function is to cache the utility

or knowledge of a state s in a single function vπ(s), which can be used by the

agent in achieving its overall goal.

The general approach for solving a reinforcement learning problem involves

learning this value function. This is achieved through a certain class of algo-

rithms called Temporal-Difference (TD) learning. At its core, TD incremen-

tally learns a value estimate of a state by bootstrapping from its succeeding

states’ estimates.

A value function is defined as an estimate of the discounted sum of rewards

that would be achieved by the agent by following the current action-selection

policy π. Informally, a value function tells the agent how “good” its action-

selection policy is. For a given policy π, we can now define the state-value

function vπ(s) as a function that maps a state s to its expected return, that
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would be obtained starting from the state s and following the policy π. Math-

ematically, a value function is defined as:

vπ(s) = Eπ
[ ∞∑
i=0

γiRt+i+1|St = s
]

(2.1)

The state-value function can be written in a recursive form based on the

value of the subsequent states:

vπ(s) = Eπ
[ ∞∑
i=0

γiRt+i+1|St = s
]

= Eπ
[
Rt+1 + γ

∞∑
i=1

γiRt+i+1|St = s
]

=
∑
a∈A

π(a|s)
∑
s′∈S

∑
r∈R

p(s′, r|s, a)
[
r + γEπ

[ ∞∑
i=1

γiRt+i+1|St+1 = s′
]]

vπ(s) =
∑
a∈A

π(a|s)
∑
s′∈S

∑
r∈R

p(s′, r|s, a)
[
r + γvπ(s′)

]
(2.2)

This is called a state-value function because it does not take into account

of the action a that is picked from by an agent using the policy π at every time

step. Although, the return that can be obtained by an agent depends on the

action a that it chooses for a given state s, this value function marginalizes the

effect of picking this action for the given state. Specifically, for this reason, it

is called the state-value function.

An obvious extension of this would be the state-action value function or

the action-value function. Informally, the action-value function qπ(s, a) maps

a state-action pair (s, a) to the expected return starting from state s, taking

the action a and following the policy π thereon:

qπ(s, a) = Eπ
[ ∞∑
i=0

γiRt+i+1|St = s;At = a
]

This can be also be written as a recursive equation based on the action-

value function of subsequent states from the current state s:

qπ(s, a) =
∑
s′∈S

∑
r∈R

p(s′, r|s, a)
[
r + γqπ(s′, a′)

]
(2.3)
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2.3 Temporal-Difference (TD) Learning

As previously described, one of the central ideas in reinforcement learning is

the estimation of value function. The learning agent needs to estimate the

value of a particular state or state-action pair in order to improve its policy

π. The value function estimates the sum of discounted sum of future rewards,

as shown in Equation 2.1. More importantly, TD forms the fundamental basis

for many prediction and control algorithms applied in reinforcement learning.

Sutton (1988) introduced a class of algorithms for learning these value

functions, called temporal-difference (TD) learning algorithms. These TD al-

gorithms are a significant contribution to the field of reinforcement learning

as they allow in incrementally learning a value function, making it suitable for

online learning. Also, these TD learning algorithms support the use function

approximation and bootstrapping.

Function approximation is a technique for representing a state when

there are uncountably many states using a tuneable parameterized function.

Generally, the number of parameters of this function approximator is negligible

compared to the number of states present in an environment.

The simplest approach for estimating a value function for many states is to

create a look-up table with one entry per state and update them based on the

Equation 2.2. For learning a action-value function, the updates are based on

Equation 2.3. However, it is difficult to represent all possible states (or state-

action pairs) as a look-up table in many realistic settings. In order handle

such large domains, this technique of function approximation was introduced.

Compressing the space of all states into a set of tractable and computa-

tionally efficient representation of the state provides an additional advantage

of generalizing across similar states, which can accelerate learning. Some well

known examples of function approximation in reinforcement learning are linear

function approximators, kernels and neural networks.

Bootstrapping refers to a term used in TD learning and has the same

meaning as in dynamic programming. Bootstrapping is an efficient way of

updating estimates from other predictions. Usually, this means that we can
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make updates to estimates of states before its actual outcome is observed.

However, this can skew the learned estimates, thereby introducing bias.

Without bootstrapping, the estimates are updated based on the actual

outcomes that are observed. Such algorithms are called Monte Carlo meth-

ods and occupy a spectrum on the opposite side of TD algorithms. Monte

Carlo methods make learning updates only at the end of an episode, when

the final state is reached. These methods suffer from high variance in their

estimates, especially in stochastic domains as the returns vary a lot. On the

other hand, TD algorithms can make incremental learning updates at each

time step through bootstrapping. As a direct consequence of bootstrapping,

TD algorithms have less variance in their estimates.

Algorithm 1 TD(λ) Learning Algorithm

INPUT: α, λ,winit

w ← winit . w is the weight vector for the state-value function
ew ← 0 . ew is the eligibility trace for the state-value function
for num. of episodes do

obtain initial state S
φ← feature corresponding to S
while S is not terminal do

obtain next state S ′ and reward R
φ′ ← feature corresponding to S ′

δ ← R + γw>φ′ −w>φ
ew ← γλew + φ
w ← w + αδew
S ← S ′

φ← φ′

end while
end for

TD algorithms are formulated as forward view and backward view methods.

The forward view of TD looks many time steps into the future, then computes

and makes incremental learning updates to its weight vectors. This forward

view of TD cannot be näıvely implemented as an online learning algorithm

because it relies on information extending many time steps into the future.

It was introduced as a theoretical framework for studying and designing TD

algorithms (Sutton, Mahmood & White, 2016; van Seijen et al., 2016; van

12



Seijen, 2016). The backward view of TD uses information at the current time

step and makes incremental updates to the weight vector. More importantly,

these backward view of TD can be implemented for online settings. In expec-

tation, the predictions made by the backward and forward views of TD are

equal.

et = γλet−1 + φt−1 (2.4)

et = max(γλet−1, φt−1) (2.5)

For computational feasibility, the backward view of TD includes an eligi-

bility trace vector e ∈ Rn, such as the accumulating traces (Equation 2.4) or

replacing traces (Equation 2.5).

2.3.1 Prediction Algorithm: TD(λ) Learning

TD(λ) algorithm is the most effective prediction algorithm in reinforcement

learning. The algorithm predicts the return Gt achieved by an agent by follow-

ing a particular action-selection policy and was introduced in Sutton (1988).

It is summarized in Algorithm 1.

This algorithm uses a parameter λ ∈ [0, 1] for trading-off between bias and

variance. Specifically, by selecting a value for λ, the resulting TD algorithm lies

somewhere between a full bootstrapping method (λ = 0) and a Monte Carlo

method (λ = 1). The learning performance of an agent making predictions

using TD depends on this tuneable parameter and is domain-specific.

The goal of the algorithm is to learn a set of weights w ∈ Rn such that the

value can be estimated accurately for a given state s ∈ S, where this state is

represented by its feature vector φ(s) ∈ Rn. The estimated value of this state

is given via a simple dot product between the weights and the features of a

state:

v̂(S,w) = w>φ(S)
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The representation of the state s ∈ S is represented by a simple feature

vector φ(s) ∈ Rn. One could also represent the state as a nonlinear func-

tion. However, linear function approximation is computationally efficient and

is sufficient for understanding the rest of this thesis.

The term δ in Algorithm 1 is called the Temporal-Difference (TD) error.

It is defined as the difference between the bootstrapped target estimate (i.e.,

Rt+1 + γv̂(St+1,w)) and the current estimate of the state. When TD makes a

perfect prediction for a given state then this TD error will be zero.

The weight update rule for the TD algorithm in Algorithm 1 is derived from

the standard stochastic gradient descent algorithm. The term α is a step-size

parameter that controls the amount to move in the direction of gradient at

a given time step. This step-size parameter is subject to certain constraints,

so that the algorithm can converge to a local solution. In practice, this α

parameter is set to a small constant value, allowing the agent to learn and

adapt to non-stationary (i.e., changing) environments.

2.3.2 Control Algorithm: Sarsa(λ) algorithm

TD learning methods are useful for making predictions about the future re-

wards received by the agent interacting with an environment for a given action-

selection policy. An interesting extension of TD algorithm is for learning the

state-action values, which implicitly represents an action-selection policy π

that maximizes the rewards achieved by the learning agent from its interac-

tions. The algorithms that learn how to select actions are referred to as control

algorithms and one such algorithm is summarized in Algorithm 2.

An action-value method learns a policy π that maps states with actions.

This policy is represented implicitly through action-values corresponding to

state-action pairs. Sarsa is a popular TD control algorithm that starts out

by evaluating the utility of following its current action-selection policy. While

choosing an action, the agent picks the action that has a large state-action

estimate and this action is called a greedy action. The agent could also ran-

domly pick a non-greedy action with a certain probability ε, and such a policy

is called ε-greedy policy. Specifically, the agent selects a greedy action with a

14



Algorithm 2 Sarsa(λ) Learning Algorithm with Accumulating Traces

INPUT: α, λ, γ,winit

w ← winit . w is the weight vector for the action-value function
ew ← 0 . ew is the eligibility trace for the action-value function
for num. of episodes do

obtain initial state S
select action A based on state S (for example, ε-greedy)
φ← features corresponding to S,A
while S is not terminal do

take action A, observe next state S ′ and reward R
select action A′ based on state S ′

φ′ ← features corresponding to S ′, A′

δ ← R + γw>φ′ −w>φ
ew ← γλew + φ
w ← w + αδew
S ← S ′

A← A′

φ← φ′

end while
end for

probability of 1− ε and a non-greedy action with a probability of ε.

This ε parameter can take a value between 0 and 1, and ensures that the

learning agent occasionally explores by taking a non-greedy action. In non-

stationary environments, the action that results in higher rewards slowly drifts

over time and using an ε-greedy can lead the agent to achieve better rewards

in these cases.

2.4 Actor-Critic Methods

In reinforcement learning, sometimes, it is better to decouple the policy from

value function and learn them separately from ongoing interactions, rather

than learning it indirectly via state-action values. Actor-Critic methods are

those methods that meet these requirements, learning an action-selection pol-

icy from online experiences. An example actor-critic architecture is shown in

Figure 2.2.

The simplest approach for learning a control policy is by directly extend-

ing the value function based method, like TD learning, to learn state-action
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Figure 2.2: The Actor-Critic architecture

values. This results in effective control algorithms (namely, Sarsa and Q-

learning). Though, these control algorithms are sufficient for domains with

small number of actions, they actually result in poor learning performance in

domains with many actions. More importantly, in many robotic domains, it

is important to learn an action-selection policy that chooses real-valued ac-

tions. For example, in order to control a servo motors, the agent needs to

use real-values signals. As a consequence of addressing these concerns, actor-

critic methods were introduced (Barto et al., 1983; Konda & Tsitsiklis, 2000;

Bhatnagar et al., 2009).

Actor-Critic methods are control methods that learn an explicit policy

through TD principles. It consists of two seperable modules: actor, which

learns an action-selection policy and a critic, that critiques the actions se-

lected by the actor module. Specifically, instead of learning values for each

state-action pairs, actor-critic methods learn to directly learn a function, called

the actor, that maps states with actions. The critic is responsible for generat-

ing TD-errors, critiquing the actions selected by the actor module. This TD

error drives learning in both actor and critic modules. These modules can be

parameterized separately with function approximators. The overall algorithm

of actor-critic method is summarized in Algorithm 5.
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Algorithm 3 Actor-Critic with Accumulating Traces

INPUT: αv, απ, λ, γ,winit,θinit
w ← winit . w is the weight vector for the critic
θ ← θinit . θ is the weight vector for the actor
ew ← 0 . ew is the eligibility trace for the critic
eθ ← 0 . eθ is the eligibility trace for the actor
for num. of episodes do

obtain initial state S and φ
while S is not terminal do

select action A for state S (using φ)
take action A, observe S ′ (along with φ′) and R
δ ← R + γw>φ′ −w>φ
ew ← γλew + φ
w ← w + αvδew
eθ ← γλeθ +∇θlog[π(A|S,θ)]
θ ← θ + απδeθ
S ← S ′

φ← φ′

end while
end for

2.5 Linear Function Approximation Using Tile

Coding

Tile coding is a popular and simple nonlinear approach for generating feature

vector φ(s) ∈ Rn. The approach generates a sparse, binary feature vector

from real-valued signals obtained as the state from the environment. Because

tile coding produces a sparse feature vector from real-valued signals, it is well-

suited for online learning in reinforcement learning. It has produced many

successful robotic applications.

Tile coding uses a tiling over the real-valued state space, partitioning it

into non-overlapping regions called tiles as shown in Figure 2.3. The Figure

2.3 shows a two-dimensional tiling for hypothetical real-valued state space.

The tiles in this tiling do not have to be in the shape of a square and need not

have the same resolution for different regions of the state space. Furthermore,

they can be used with any number of dimensions in the state space.

For a given tiling, the real-valued signal of the state would be active (i.e.,

present) in exactly one of the tile whereas all the other tiles are inactive. By
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Figure 2.3: Tile coding

encoding this presence of the state signal through this tiling produces a binary

vector of 0s corresponding to those inactive tiles and a 1 in the position of an

active tile. The same process can be repeated for a number of tilings that are

offset by predetermined or a random pattern from each other, each of them

producing a single binary vector. All of these binary vectors are concatenated

to form a long and sparse binary vector, which forms the feature representation

φ(s) for a given state signal s ∈ S.
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Chapter 3

Existing Approaches to
Human-Machine Interaction

Designing intelligent, user-interactive agents, that can effectively amplify our

existing cognitive and physical capabilities, are one of the important promises

of Artificial Intelligence. Through this, we hope to merge ourselves with AI. A

principle example of this can be found in assistive rehabilitation robots, where

machine learning techniques enable electromechanical systems in restoring or

augmenting biological limbs that are lost through injury or illness.

Interactive machine learning and human-computer interaction are fields

that are as old as computers and it is not possible to summarize all of the key

ideas in this thesis. However, we summarize some of the recent approaches in

these fields, particularly those that are related to this thesis, followed by their

strengths and weaknesses.

The existing works in interactive machine learning approach the problem

from multiple perspectives. However, most of them share a common goal of

allowing people to effectively communicate their intents or preferences to a

machine, which then uses this information to solve a given task.

3.1 Interactions in the Form of Rewards

The simplest approach for empowering people to communicate their prefer-

ences to an interacting machine is by providing user-generated rewards. This

user-generated reward augments or shapes the existing reward signal produced
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Figure 3.1: Interactive Shaping: Providing interactions in the form of rewards
to the learning agent.

by an environment within which the agent is located. The primary motivation

behind this line of research is from animal training, where a trainer uses a

clicker and some treats to shape the behavior of an animal. In this research

direction, the user directly influences the reward channel of the learning sys-

tem through explicitly generated human reward. A simple representation of

this line of research is shown in Figure 3.1.

The first research work that explored this idea of shaping a learning sys-

tem’s behavior by influencing the reward channel is the one introduced by

Isbell et al. (2000). In this work, a virtual agent is located in an active online

community frequented by hundreds of users. The users interacted with this

agent through some predefined text based reward signals. The virtual agent,

by keeping track of certain statistics, learned to adapt its behavior to maximize

this user-generated reward signal.

A more recent work, conforming to this research trend, was conducted by

Thomaz and Breazeal (2006, 2008). Here, the authors extensively studied how

the users teach a virtual reinforcement learning agent to perform a complex

task. Specifically, the users provided rewards to the learning agent with the

sole intention of guiding the system to complete a given task. By analyzing

the reward generation pattern produced by the users for teaching their agents,

they observed that each user followed a different approach for guiding the

learning system. There was no standard strategy adopted by the users. Also,

it was observed that the interacting users had different views about the rewards

that were provided to the agent. Particularly, some users frequently provided

positive rewards with the intention of motivating the learning agent and this
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vastly differs from a reinforcement learning perspective, which views rewards

as evaluations for taking a particular action or a sequence of actions.

Pilarski et al. (2011) pushed this line of research forward by showing

that virtual prosthetic limb agent can learn complex behaviors through online

training from rewards generated by a user. Another related study, conducted

by Suay and Chernova (2011), extended the work of Thomaz and Breazeal

(2008) for teaching a robot to sort different objects. Both of these works were

probably the first to look at teaching an interactive learning system using

human-generated rewards alone.

Many of the recent works have leveraged this fundamental idea of training

an interactive agent with human-generated rewards leading to many valuable

contributions in the field of interactive machine learning. Knox and Stone

(2013) successfully trained a robot with human-generated rewards. Iturrate

et al. (2010) trained a supervised learning algorithm to classify different EEG

patterns, obtained from an interacting user, as positive and negative reward

signals. More recently, this approach of classifying EEG patterns as rewards,

introduced by Iturrate et al. (2010), was used for teaching a neuroprosthesis

arm to perform simple control tasks (Iturrate et al., 2015) and for controlling

the steering angle of a car (Zhang et al., 2015).

All of these research works assumes that the distribution of human-generated

rewards to be consistent throughout an experiment setting. However, this

turned out to be false as per the findings of Thomaz and Breazeal (2008). Par-

ticularly because the interacting user develops a mental model of the learning

agent, and as the agent improves its behavior, the frequency of user-generated

reward begins to reduce. This leads the agent to unlearn, thereby degenerating

its behavior towards something that is undesirable by its user.

In order to address this important issue, where an interacting user modifies

his/her reward generation patterns, Knox and Stone (2009) introduced the idea

of training a supervised learning algorithm with multiple state-action pairs

and its corresponding user-generated reward. Once this supervised learning

method reasonably learns a reward-generation model, the interacting user is

replaced this reward-generator. This approach allows the interacting agent to
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receive consistent rewards throughout the task.

Though this simple approach of Knox and Stone (2009) addresses an impor-

tant problem in interactive machine learning, it opens up a more significantly

difficult issue of adaptability in the learning agent. Specifically, when the task

changes, ever so minutely, the user needs to interrupt the agent and reprogram

this supervised learning method with new training data that is tailored to this

modified task. Another noted disadvantage of their approach is that if the

task is complex and realistic, like a prosthetic limb or a self-driving car, it is

impossible scale up their approach as it requires the user to label all possible

state-action pairs with a human-generated reward, which is cumbersome.

3.2 Interactions in the Form of Demonstra-

tions and Instructions

A closely related line of research that is often used for teaching learning agents

is by providing interactions in the form of demonstrations or instructions,

generally provided by non-expert users. Learning from demonstration is a key

idea, first introduced by Abbeel and Ng (2004), through which a learning agent

can be trained to follow a behavior demonstrated by a user. This demonstra-

tion is the only interaction that happens between the user and learning agent.

Specifically, an error function is formulated based on this demonstration by

provided by the user, which is then used for training the agent.

Many of the subsequent research works in learning from demonstrations

(e.g., Koenig and Mataric, 2012; Schulman et al., 2013; Alizadeh et al., 2014)

relies on the fundamental idea described above. In order to train a learning

agent to perform a particular behavior it needs to know its expected sequence

of actions which is provided broadly as interactions in the form of demonstra-

tions. Based on these demonstrations, the agent learns to take a sequence

of actions that closely match these demonstrations. This limits the approach

because the learning agent will not know the right action to take when faced

with an unseen part of the environment. To overcome this limitation, many

probabilistic approaches were developed to query the user on taking a right
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sequence of actions (Cakmak & Thomaz, 2012).

Recently, Vasan and Pilarski (2017) introduced an approach for training a

myoelectric prosthetic arm from online demonstrations provided by the inter-

acting user. In their approach, they generate reward signals to the learning

agent that punishes behaviors that are far from the user’s demonstrations.

Over time, their approach allows the agent to learn a behavior that closely

matches with the interacting user.

Some research works have also looked at using explicit instructions (Breazeal,

1998; Liu & Picard, 2003), which can either be verbal or non-verbal cues, for

allowing people to teach their learning agents to perform a task. Though this

works in simple domains, it is unscalable for many realistic settings because it

often imposes on the users’ cognitive load.

3.3 Relevance of these Related Works to this

Thesis

By perusing many of the research works in the field of human-machine inter-

action, it becomes obvious that most of the approaches are focused on shap-

ing the agent through rewards and punishments or through demonstrations.

Though, these are simple approaches towards interactive machine learning, it

leads to issues in changing environments (or tasks). Specifically, whenever the

task changes or modified, the user needs to provide more rewards or demon-

strations in order to modify the agent’s behavior.

Here, we hypothesize that if a learning agent can learn and understand the

meaning of various cues from the user’s body language, then the agent can

quickly learn to perceive evaluative feedback from the user’s body language

and need not rely on explicit interactions from the user. More importantly, this

allows the agent to adapt its behavior according to the user’s expectations by

picking on their body language cues. It is important to point out here that our

approach is the first that learns the meaning of various subtle body language

cues produced by the user during the process of interaction.
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Chapter 4

Learning From Prospective
Body Language

The fundamental contribution of this thesis is to introduce a human-machine

interaction approach that allows people to teach their machines using whatever

subtle body language cues that are produced during the process of interaction.

As opposed to existing approaches, the meaning of these subtle cues are adap-

tively learned by the machine from ongoing interactions with the user. As

the machine learns the meaning of these subtle cues, the user can teach the

machine to perform a given task according to their preferences.

By teaching the machine through these adaptively learned non-verbal cues,

the agent completes these tasks much faster than a conventional user-interactive

agent and consequently maximizes user satisfaction.

In this chapter, we begin with the motivation behind our approach and then

introduce our idea. We also ground our approach with existing approaches that

allow machines to learn from body language.

4.1 Towards Natural Forms of Human-Machine

Interaction

Human communication is intuitive and sustainable, allowing us to form effec-

tive teams that collaboratively work towards solving complex problems. The

process of human communication involves both non-verbal cues and speech.

In the near future, we need to form similarly effective teams with intelligent
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machines, so that we can tackle more challenging problems. Ultimately, we

hope to amplify our cognitive and physical capabilities through machines. As

a first step towards achieving this grand prize of intelligence amplification, we

need to design approaches that allow people to communicate naturally with

machines, where the communicative process is as intuitive to that of human

communication.

Ideal forms of human-machine interaction needs to enable machines and

their users to communicate naturally, similar to that of human communication.

In this thesis, we focus on using body language to improve human-machine in-

teraction, similar to how these cues are used in human communication. People

naturally produce different non-verbal cues, without much effort, during the

process of communication (Frith, 2009; Pezzulo et al., 2013; Scheider et al.,

2016). Particularly, these subtle cues differ across people and are usually con-

ditioned upon their current situation or environment. These cues are produced

as communicative signals and influence the behavior of their observers. For

example, while giving a talk to an audience, we usually make accurate judg-

ments about what the audience is currently experiencing or understanding and

use these judgments to adapt our talk. Our ability to perceive others’ inten-

tions and motivations or their levels of satisfaction from their body language

is fundamental for human communication (Adolphs, 2002).

Similar to human communication, people also produce subtle cues dur-

ing their interactions with their machines in human-machine interaction do-

mains. More importantly, these cues are produced unintentionally without

any cognitive effort. These cues are indicative of their satisfaction towards

the machine’s behavior (Abdić et al., 2016). As a natural direction for im-

proving human-machine interaction would be to use these subtle cues to teach

machines perform a collaborative task.
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4.2 Our Approach: Learning from Prospec-

tive Body Language Cues

As described previously, in this thesis, we introduce a human-machine interac-

tion approach that allows people to teach their machines through subtle body

language cues. Particularly, these non-verbal cues are produced unintention-

ally by the user interacting with their machine, where the machine is learning

to perform a collaborative task according to the user’s preferences.

The body language cues produced during ongoing interactions are indica-

tive of the user’s satisfaction towards their machine’s behavior. The machine

learns to associate these cues with their user’s satisfaction, which is measured

in terms of occasional explicit feedback. Over time, the machine learns to

predict its future rewards it would receive from the user directly from their

body language. As the machine learns to make predictions about its future

rewards from the user’s body language, it can adapt its subsequent behavior

in a given task even before the user generates an explicit feedback, thereby

maximizing user satisfaction. As these cues are used by the learning agent to

forecast its future rewards, we call them prospective body language cues.

Figure 4.1: A human-machine interaction setup where the agent learns from
prospective body language cues to complete a given task. Here, the agent
learns to solve a task from facial expressions of the user.
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Our human-machine interaction approach of learning from prospective

body language assumes that a user is interacting with an implemented learn-

ing agent in a human-machine collaborative task. An instance of this setup is

shown in Figure 4.1. The goal for both the user and the agent is to success-

fully complete the given tasks. Specifically, the goal for the learning agent is to

figure out the right sequence of actions to take in order to complete the given

tasks as fast as possible, and as a result, maximize user satisfaction. The goal

for the user is to guide the learning agent in completing these given tasks.

The human-machine interaction setup, which is used in this thesis, involves

a user interacting with an agent. The user observes the agent’s actions and

interactions within an environment as it learns to perform the given collab-

orative task. The interactions from the user are in the form of non-verbal

cues and occasional negative rewards. The agent observes these cues through-

out the course of the task and receives these occasional rewards. The process

of providing a negative reward to the interacting agent is called an explicit

feedback and is achieved by the user pressing a button on the keyboard. We

assume that, in real-world collaborative tasks, it is easier to provide evaluative

feedbacks in the form of body language than generating explicit feedback.

During the interactive task, the user produces non-verbal cues that are in-

dicative of the agent’s performance in the task and occasionally provide explicit

feedback. As the agent observes these subtle cues and receives these explicit

feedback, it learns to associate these cues with the future rewards. Specifically,

the agent learns a value function that maps the user’s body language to its

future rewards. As a result, the agent learns to predict user satisfaction which

is measured in terms of the explicit feedback. Over time, the agent learns to

use these predictions to adapt its behavior before it receives explicit feedback

from the user. In short, the agent perceives the user’s body language cues as

evaluative signals, critiquing and subsequently influencing the agent’s behav-

ior so as to complete the task faster and according to the user’s preferences.

This directly maximizes user satisfaction because the agent learns to quickly

complete the task as preferred by the user.

Learning the meaning of these non-verbal cues and learning an appropriate
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behavior based on these cues is occurs together and is handled by conventional

temporal-difference learning methods. Our method implicitly involves two

processes: first, the agent learns to the meaning of different non-verbal cues

in the form of a value function, and second, uses these predictions to learn an

appropriate behavior that maximizes its rewards. Overall, our method allows

people to tea ch their machines using whatever subtle body language they

produce during interaction. This is a general approach and encompasses any

subtle non-verbal cue. These cues are associated with their future rewards and

learned as a value function. As these cues forecast the future rewards received

by the learning agent, these are called prospective body language cues and

we say that the agent is learning from prospective body language. However,

for the experiments in this thesis, we restrict our approach to the subtle cues

produced in the form of facial expressions by the user while interacting with

their machine and we call this restricted approach face valuing, as the agent

learns a value function over the user’s facial expression.

4.3 Existing Approaches that Use Body Lan-

guage

In the previous sections, we described our approach that allows people to

teach their machines using subtle body language cues, where these cues inform

the agent about its future rewards. However, using body language to teach

machines is a natural idea in the field of human-machine interaction, and

naturally, many existing approaches have attempted at improving human-

machine interaction through body language. In this section, we describe the

fundamental ideas that exist within the field of human-machine interaction

approaches that use body language, in one way or the other, to train machines.

In the next section, we contrast these with our approach.

4.3.1 Body Language as Instructions to Machines

The primary goal of a machine in a human-machine interaction task is to

learn to perform a task according to the user’s preferences. A simple way
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of teaching the machine with body language to perform a task is to map

different non-verbal cues to different instructions to the machines. In these

cases, the user would need to produce the appropriate non-verbal cue so that

the machine executes the right instruction. This is the overall idea of the

existing approaches described in this section.

Faria et al. (2007) designed a user interface that can be operated using

the user’s facial expressions. Their approach involves mapping different facial

expressions to control signals. The facial expressions are recognized from the

user’s face that is observed through a simple webcam from a portable laptop,

which sends control signals to the wheelchair. In their approach, the user

is required to produce a particular facial expression in order to move the

wheelchair in a specific direction. The mappings between the facial expression

cues and instructions are predefined by the system designer, implying that the

users are required to remember these mappings and translate their expressions

accordingly to effectively control these wheelchairs.

Similar approaches were also developed by many researchers, the popular

ones are listed here: Wei et al. (2009), Lievesley et al. (2011), Faria et al.

(2012), Rechy-Ramirez et al. (2012), Tanaka et al. (2005), Galan et al. (2008),

Ferreira et al. (2007), She et al. (2014), Cruz et al. (2015). Many of these

approaches used different methods for extracting facial expressions and/or

EEG signals from the user. However, all of them still rely on the system

designer to map these cues to different control signals. More importantly,

these approaches require the user to remember the body language mappings

and translate their cues to effectively control the system.

Reis et al. (2009) designed a comprehensive framework that allowed users

to control their wheelchairs through a combination of modalities, like voice,

facial expressions, head movements, keyboard, joystick etc. More importantly,

their framework allowed the users to program their own sequence of cues to

a control signal, prior to the operation of the wheelchair, as opposed to ap-

proaches that relies on the system designer to map cues to commands.
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4.3.2 Body Language as Rewards to Machines

In this body of research, the general idea is to map non-verbal cues to reward

signals. The idea here is to shape the existing reward channel of the learning

agent using user’s body language. More specifically, a specific body language

cue results in producing a certain reward to the agent. Many of the approaches

in this line of research rely on supervised learning approached to classify differ-

ent non-verbal cues and the mapping of these cues to different reward signals

is achieved by the system designer. Some approaches use verbal instructions

as rewards instead of non-verbal cues.

There are no research works, to the best of my knowledge, that uses body

language as reward signals to machines. However, this is an obvious idea, that

is fundamentally same as interacting with machines through user-generated

rewards. As it is similar to that of learning from user-generated rewards, this

research direction would also have similar issues, some of which are described

below.

The first issue that arises when teaching a machine using user-generated

rewards is that the reward distribution produced by the user changes as the

experiment progresses. Specifically, during the initial part of the experiment,

the user provides more rewards and actively continues this until the agent

learns a desired behavior. After the agent learns to behave in an appropriate

manner, the user does not feel the necessity to continue with the interaction

process. Ideally, the user should not be providing rewards when the agent

behaves in the right way. However, reinforcement learning algorithms cannot

handle this, driving the agent to explore different actions and as a result de-

teriorates its behavior. In order to generate a stable stream of user-generated

rewards, Knox and Stone (2009), introduced the TAMER framework, where a

supervised learning model of the user-generated rewards is first learned from

the user and then used in place of the user. This stabilizes the interacting

agent, executing a behavior that is appropriate with the user. However, when

the task changes or when the agent is faced with a new task, then the user

needs to intervene and reprogram the supervised model in order to handle this
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change of task.

An important requirement, and another potential limitation, in this line

of research is that complex training datasets need to be created in order to

recognize subtle cues, that are specific to the user.

4.4 Comparison to Existing Human-Machine

Interaction Approaches

In the field of human-machine interaction, the existing ideas either view body

language as instructions or as reward signals to the machines. More impor-

tantly, the approaches resulting from these ideas assume that people produce

similar non-verbal cues to convey their reactions towards the machines. This

is a flawed assumption to make, because different people produce different

body language to convey what they feel about their current situation. De-

signing approaches for human-machine interaction based on this assumption

would require the users to translate their body language to conform with their

machine’s design. Using such approaches in real-world human-machine in-

teraction tasks, like the ones involving prosthetic limbs or autonomous cars,

would require the user to focus some part of their attention to effectively in-

teract with the machine. Consequently, this cognitively imposes on the user,

making them to lose focus on what is important at hand. Ideally, this sce-

nario needs to be turned around. The machine needs to be adapting to the

user, learning from whatever subtle cues they produce during the process of

interaction, rather than requiring the user to adapt to the machine.

As opposed to these existing approaches, the approach we introduced here

does not assume that all people produce similar body language. More im-

portantly, our approach learns the meaning of the different non-verbal cues

directly from ongoing interactions with the user. The machine learns to as-

sociate whatever cues with user-generated rewards, and over time, learns to

predict the user feedback from their body language. The meaning of these

non-verbal cues are grounded in terms of the later rewards the machine re-

ceives from the user. As the machine learns to predict its future rewards
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from the user, it can then adapt its behavior in order to maximize its rewards

and thereby maximize user satisfaction. This is different from any existing

approaches to human-machine interaction because our approach learns the

meaning of non-verbal cues from the user.
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Chapter 5

Using Sarsa To Learn From
Prospective Body Language

In the previous chapter, we introduced our idea of teaching machines through

body language cues. Particularly, the machine learns to pick up whatever

subtle cues people produce during the process of interaction and associate

these cues with their user satisfaction. By learning a value function that maps

these non-verbal cues to future rewards, the users can teach the machines to

act according to their preferences, thereby teaching the machine to complete

the given tasks quickly. In contrast to our introduced approach, the existing

approaches that learn from body language usually rely on the system designer

to map these different cues to instructions that are executed by the machine.

Some methods map these cues as reward signals to the learning machine. As

these mappings to rewards or instructions are non-adaptive, they require the

user to translate their body language to effectively use such machines, and as

a result cause significant cognitive load on the interacting user.

In this chapter, we implement our approach using a standard action-value

learning algorithm, namely Sarsa, and compare its performance with another

agent that learns only from user-generated rewards. Specifically, we implement

our approach to learn from subtle facial expression cues produced by the user

while interacting with the machine whereas the conventional agent relies only

on the user-generated rewards to figure out the right approach to complete the

given tasks.

Though our approach is general enough to learn from any body language
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cue, here, we restrict ourselves to facial expression cues of the user and this

approach is called face valuing.

5.1 Implementation using Sarsa

The face-valuing approach involves a user interacting with an implemented

agent which is learning to complete a given human-machine collaborative task.

In order to complete this task quickly, the user needs to communicate their

preferences to the machine. Particularly, the agent needs to figure out the

right action to take, according to the user in order to complete the task.

A simple way of realizing this approach as an interactive agent is by using a

standard reinforcement learning algorithm called Sarsa. This is a simple and

popular action-value learning algorithm. Sarsa extends temporal-difference

learning to learn an action-selection policy which can be used to pick actions

that maximize rewards achieved by the learning agent. For a comprehensive

description about this algorithm refer to the textbook written by Sutton and

Barto (2017).

Experiment Setup. The face-valuing approach involves a setup where

a user is interacting with a virtual agent, who observes the agent through a

display. At every time step, the agent receives a new raw image from a standard

webcam. This image is assumed to contain the user’s face and is processed into

features through a standard facial detection algorithm, which is then tile-coded

to form the feature representation for the agent. These features approximate

the current state of the agent and is generated at each time step from the

facial expression cues of the user. The reinforcement learning agent learns to

associate and predict its expected rewards from these feature representations,

learned with occasionally generated explicit corrective feedback from the user.

Based on these action-value predictions, the agent learns to take actions that

maximize user satisfaction (i.e., minimize the explicit feedback received over

time). Through this approach, the agent learns to take actions prior to the

user generating any explicit feedback.

In subsequent sections, we describe the process involved in constructing
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the state representation for the face-valuing agent and the algorithm as pseu-

docode. In later sections, we describe the simulated human-computer collab-

orative task that is used in our experiments and report our results obtained

from the face-valuing Sarsa agent.

Figure 5.1: State representation for face-valuing agent: Features extracted
from a user’s face.

5.1.1 State Representation: Processing Raw Images into
Facial Expression Features

The state representation is perhaps the most important component to a re-

inforcement learning agent. It allows the agent to identify its current state

within an environment. By reliably identifying its current state, the agent

learns to take actions so as to maximize its reward signal from the environ-

ment. More generally, we can describe the state representation as the “eyes”

of the agent, which enables it to identify and represent different states that it

observes during its interactions with the environment.

The state representation for the agent needs to be designed so that it can

identify various states reliably from its features. This state space of the face-

valuing agent allows it to learn its expected reward or punishment grounded

in the facial cues of its user from ongoing interactions. For our experiments,

we use a simple facial feature detection algorithm which extracts interesting

feature points from the user’s face. The features extracted from a user’s face

is shown in Figure 5.1.

The face-valuing agent observes a frame containing the user’s face obtained

from a webcam. This image frame, which is assumed to contain the user’s face,
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is processed and 68 facial landmark points are extracted using a popular facial

landmark detection algorithm (Kazemi et al., 2014). These facial landmark

points are simple two dimensional coordinates over the raw input frame that

denote the position of certain special locations of the user’s face, as shown in

Figure 5.1. Particularly, these landmark points localize salient regions of the

face, namely the eyes, eyebrows, nose, mouth and jawline. These points are

also called key points and are usually used for aligning multiple images taken

from different viewpoints. However, these are sufficient for our purpose and

our experiments as they provide a crude approximation of the facial expression

produced by a user.

At every time step, the agent receives a raw frame from the webcam, from

which it extracts these 68 keypoints. These keypoints are normalized by sub-

tracting out their mean value and dividing them by their standard deviations.

Out of these 68 key points, 23 points are selected, which excludes the features

corresponding to the jawline. Each of these 23 points, are individually tile-

coded with 4 tilings. Each of these tilings are of size 10× 10. This results in a

feature vector of size 9200 and this vector forms a part of the state space. It

is referred as φ(s).

Facial landmark points are chosen as features for representing facial ex-

pression cues because these points are easy to compute from raw images in

real-time, without involving much computation. This is appealing because we

are concerned with building a real-time human-computer interaction approach

that allows users to communicate with their learning agents through ongoing

interactions. The form of communication involves using different facial cues,

with its meaning learned from ongoing interactions involving infrequent ex-

plicit feedback.

5.1.2 Sarsa Learning Algorithm

Reinforcement learning algorithm is the core component of our face-valuing

approach. The facial feature detection algorithm is used to construct the state

representation from the user’s facial expression cues, but the important learn-

ing process happens through the following reinforcement learning algorithm.
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Particularly, the learning process is responsible for associating facial expression

cues to the future rewards experienced by the agent while operating within the

simulated environment.

In this face-valuing approach, user satisfaction is formalized as an action-

value function of a learning agent and is learned through Temporal-Difference

learning.

Algorithm 4 Face Valuing: Implementation using Sarsa

INPUT: α, λ, γ,winit

w ← winit . w is the weight vector for the action-value function
ew ← 0 . ew is the eligibility trace for the action-value function
for num. of episodes do

obtain initial state S
construct the features φ(S) corresponding to initial state S
(from the user’s face, as described in Section 5.1.1)
select action A based on state features φ(S) (for example, ε-greedy)
ψ ← features corresponding to S,A
while S is not terminal do

take action A, observe next state S ′ and reward R
construct the features φ(S ′) corresponding to the next state S ′

select action A′ based on φ(S ′)
ψ′ ← features corresponding to S ′, A′

δ ← R + γw>ψ′ −w>ψ
ew ← γλew + ψ
w ← w + αδew
S ← S ′

A← A′

ψ ← ψ′

end while
end for

At every time step, the images obtained from the webcam are processed into

features corresponding to the facial expression cues of the user, who is inter-

acting with the agent. Using these features, the agent estimates its likelihood

of picking different actions. The learning agent consists of a set of parameters

w ∈ Rn, which is incrementally updated from rewards received by the agent.

This set of parameters, when multiplied with the features corresponding to

a state-action pair, gives an estimate of the expected reward that would be

received by the agent by picking this corresponding action. As the algorithm
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learns the utility of each state-action pair, this is called an action-value method

and one such action-value algorithm, called Sarsa, is used for constructing the

face-valuing agent. This is described as pseudocode in Algorithm 4.

5.2 Grip-Selection Task

We introduce a grip-selection task that is inspired from a difficult problem from

the prostheses domain and use this task to evaluate our face-valuing approach.

In this task, the objective for the agent is to select an appropriate grip pattern

for a given object and use this grip to successfully grasp the object.

Figure 5.2: Grip-selection task

At the beginning of the experiment, an object is randomly created and

shown to the user. This object is located at a distance from the location

where the agent’s grip is spawned. This initial location is called the “grip-

changing station” and here the agent can select from a set of grips. The

objective for the agent is to complete this task, by selecting an appropriate

grip at this grip-changing station, then move towards the object’s location and

complete a grasp of this object. A successful grasp of the given object using an

appropriate grip completes an episode. The appropriate grip for completing a

grasp of this object depends on the user’s preference — there could be many

different grips available to the agent and the right one here depends on the

user. This is similar to many real-world human-machine interaction tasks,

like prostheses and self-driving cars, where the goal for the agent is to behave

according to the user’s preferences.

The task consists of a set of n grips and m objects. Depending on the ex-

periment setting, there could be many possible grip-object combinations that
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could complete an episode successfully. However, the correct grip-object com-

bination depends on the user who ultimately evaluates the agent’s behavior.

The task is formulated as an undiscounted episodic MDP with a 0 reward

at every time step from the environment. Also, there is no reward from the

environment for a termination of an episode. The only available reward signal

is from the interacting user: by pushing a button, the user can produce a

reward of −1 to the agent for the corresponding time step.

5.2.1 State Space

The state space for the agent without face valuing consists of the given object’s

ID and the agent’s current selected grip ID, along with a bias term. Specifically,

the ID of the object that is displayed in an episode is one-hot encoded to form a

binary valued vector of size m, where m is the total number of objects available

in an experiment setting. Similarly, the ID of the agent’s current selected grip

is one-hot encoded to form a binary valued vector of size n, where n is the

number of grips available to the agent at its grip-changing station. Both these

vectors are concatenated along with a bias term with a value of 1 to form the

state’s feature vector of size m + n + 1. This forms the state space for the

agent without face valuing.

For the face-valuing agent, the state space consists of the features corre-

sponding to the user’s facial expression cues. The facial landmark points from

the user’s face are extracted, at each time step, and processed into a vector

of size 9201. This vector is the feature representation corresponding to the

user’s facial expression cues and represents the state space for the face-valuing

agent.

5.2.2 Action Space

The complete action space for the agents (with and without access to face

valuing) consists of the following actions: {grip1, grip2, · · · , gripn, ↑, ↓}, where

the first n actions results in selecting the corresponding grip, from a set of n

grips available within an experiment setting. The remaining two actions move

the agent towards and away from the given object.
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Though there are n+2 actions, all of them are not available to the agent at

all times. The actions available to the agent depends on its position relative to

the object and grip-changing station. When the agent is in the grip-changing

station, the available actions are {grip1, grip2, · · · , gripn, ↑} whereas when the

agent leaves the grip-changing station, {↑, ↓} actions are available. In other

words, the agent can change its grip only at this grip-changing station. Once

it leaves this station, the agent cannot change its grip unless it returns back

to this position.

5.2.3 User-Generated Rewards

As described previously, there are no reward signals from the environment.

The sole source of reward is from the interacting user. Specifically, when

the user pushes the reward button, the agent receives a −1 reward for the

corresponding time step. Moreover, on pressing this reward button, the agent

loses all its actions except {↓} until it reaches the grip-changing station.

The agent observes the state space once every three-tenth of a second and

takes an action at every time step. The agent, however, has the freedom of

choosing the same action for many consecutive time steps which allows the

user to observe the agent’s action and then expressively respond to the agent.

5.3 Experiments and Results

The experiments and results in this section involved a comparison between

two types of learning agents: one with access to the task-specific features and

the other with access to face-valuing features. The agent which uses only the

task-specific features does not have access to face-valuing features and is a

simple user-interactive approach that learns from human interactions in the

form of rewards.

The first set of experiments consisted of varying the number of object

and grips available within a task and comparing the learning performances of

the agents. In the second set of experiments, both these agents had limited

number of grips available within the task, but a new object was generated for

40



each episode. More importantly, no object was repeated during this second

experiment, essentially making each episode a new task to the learning agent.

This is a realistic setting of a real-world grasping task, where there are infinitely

many objects available in the world and they need to be picked up using a

limited set of grips

Both the agents used in these two experiments were constructed using the

Sarsa learning algorithm. Specifically, two Sarsa agents, one with face-valuing

features and the other with task-specific features, were evaluated. Throughout

the course of the experiment, the user does not know the type of agent that

is currently interacting. In other words, the experiments were conducted in a

blind manner and consisted of 15 episodes.

5.3.1 Experiment 1: Multiple Grip and Object Setting

In this first experiment, we varied the number of available grips and objects

available within the simulated task and compared the learning performances

of different user-interaction agents. Specifically, for different object and grip

settings, we compared the learning performances of an agent with access to

task-specific features and an agent with access to face-valuing features.

Each experiment consisted of 15 episodes. At the beginning of every

episode, an object and a grip, randomly selected from the set of available

objects and grips, is displayed to the user through the display. During an

episode, the object remains fixed whereas the agent can change its grip from

one of its available grips. The episode terminates only on a successful grasp

using an appropriate grip.
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(a) 2 objects & 2 grips (b) 2 objects & 4 grips (c) 2 objects & 8 grips

(d) 4 objects & 2 grips (e) 4 objects & 4 grips (f) 4 objects & 8 grips

(g) 8 objects & 2 grips (h) 8 objects & 4 grips (i) 8 objects & 8 grips

Figure 5.3: Total time steps taken for different grip and object settings by
Sarsa learning agents.
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(a) 2 grips setting (b) 4 grips setting (c) 8 grips setting

Figure 5.4: Total number of user-generated rewards (i.e., explicit feedback)
provided to the learning agents.

The plots of total time steps taken and total user-generated rewards accu-

mulated by the agents during this experiment are shown in Figures 5.3 and

5.4. The plots in Figure 5.3 represents the cumulative time taken by a learn-

ing agent to complete a successful grasp over multiple episodes. The plots in

Figure 5.4 displays the number of times the user provided an explicit feedback

to the learning agents. Both these graphs were generated from the same user

experiments, conducted in a blind manner. A perfect agent that knows its

user’s intentions would receive no user-generated explicit feedback in all these

settings. Moreover, it would take exactly 11 time steps for completing an

episode: one time step for picking the right grip and ten time steps for moving

towards and grasping the given object.

From the plots in Figure 5.3, the agent with access to face-valuing features

quickly adapted with respect to the user’s preferences in all the experiment

settings. The face-valuing agent achieved this performance with significantly

less number of user-generated feedback than that of the agent with access to

task-specific features.

5.3.2 Experiment 2: Infinite Object Setting

This second experiment was designed to show the performance improvement

obtained from face valuing in a difficult and a realistic task. In this experiment
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Figure 5.5: Total time steps taken to complete the infinite objects setting by
Sarsa learning agents.

setup, a new object is generated at the beginning of every episode in the

grip-selection task. Specifically, each episode uses a new object, making each

episode a new task to the learning agent. The objective for the learning agent

here is to complete the grasp of this given object by selecting a grip from its

limited set of grips. This setup allows in exploring the ability of a face-valuing

agent to leverage from previous learning experiences to address new or changed

tasks.

It is important to note here that, in this experiment setting, an agent

with task-specific features cannot learn the user’s preferences from task-specific

features. This is because each episode is a new task to the learning agent. The

task-specific agent can solve this task only through trial and error: by trying

out each grip for each object.

The graphs in Figure 5.5 show the total time steps taken by the learn-

ing agents. From this figure, it is quite clear that the face-valuing agent is

much quicker in adapting to its user’s preferences, which are communicated

as facial expression cues. Particularly, the body language of the user does not

change much throughout the task and this allows the face-valuing agent to

reuse its previous learning to complete unseen tasks with new objects. This

is in contrast to the task-specific agent, which cannot reuse its previous learn-

ing because of its state space. More importantly, these results confirm the

conclusions drawn from the previous experiment, which is that face-valuing
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agents can complete human-machine collaboration tasks much faster than the

agent using task-specific features because it relies directly on the user’s body

language for figuring out the correct sequence of action to take.

A standard t-test between the learning performances of the agents with

and without face valuing gives a value of 0.0002, meaning that the results are

statistically significant. These values were obtained from a paired t-test using

a two-tailed distribution.

5.4 Discussion

Several studies have shown that users, to a certain extent, are willing to am-

plify their cognitive and physical abilities through machines. For example, in

medical domains, it is common for people with amputations to extend their

capabilities or overcome their limitations by forming partnerships with ma-

chines (Williams, 2011). However, the current technologies are unsustainable

and unscalable to form successful human-machine partnerships. The funda-

mental issue that hinders in achieving this goal is that the existing technologies

are not capable of identifying and adapting to the changing personal prefer-

ences of their users. Instead, these technologies expect the user to translate

their communicative signals according to the system design, which leads to

user frustration towards the system. This issue serves as a serious bottleneck

to intelligence amplification. The human-machine interaction approach, intro-

duced in this thesis, serves as the first steps towards achieving this ambitious

goal of intelligence amplification.

Though our experiments were simulated, we believe that our approach can

be much more valuable in a realistic robot setting — we expect a robot’s

behavior to elicit more expressive facial feedback from the user, in comparison

to our simple simulated domains. More importantly, these expressive feedback

would serve as powerful features to a face-valuing agent.

The grip-selection task is a task where the learning agent needs to figure

out the goal from its ongoing interactions with a user. The agent, operating

within this task, can be termed as a goal-seeking agent (Pilarksi et al., 2015).
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In order to demonstrate the significance of our approach, we conducted two

sets of experiments: the first one involved multiple object-grip settings on

the grip-selection task. The second experiment involved in generating a new

object for each episode. This infinite object setting is pertinent to real-world

scenarios, where there are uncountable number of objects that can be grasped

from a limited set of grip patterns.

In our experiments, we compare learning agents that operate with different

state spaces. Particularly, one agent operates with a state space that identifies

the given object and the current selected grip by the agent. Using this task-

specific state representation, the agent can learn to identify the correct object-

grip combinations from user-generated rewards. The agent learns to pick the

correct grip after trying out each possible grip for a given object and this policy

is learned through user-generated rewards. For a face-valuing agent, the state

space consists of the user’s facial expression cues that is processed at each time

step. This state space conveys the user’s preferences or intentions through

facial expressions. The agent using this state space learns to associate the

meaning of these expressions with its experienced rewards. More importantly,

this state space lets the agent figure out the user’s intents irrespective of the

task as this is independent of the task. This allows the agent to learn faster

in a task without trying out every possible grip. Specifically, this significantly

reduces the amount of experience required by the agent to learn a behavior

according to the user’s preferences.

The results from the first user experiment (Section 5.3.1) suggests that the

face-valuing agent learns to adapt quicker to its user’s preferences in a given

task, when compared to an agent without access to face valuing. Moreover,

from the plots comparing distribution of user-generated rewards, it can be ob-

served that the face-valuing agent achieves this performance with significantly

fewer number of explicit feedback from its user.

From the second user experiment (Section 5.3.2), we empirically show a

scenario where a conventional agent can fail. From both user experiments,

we can see that the face-valuing agent successfully adapts and completes one

episode after another by relying on helpful clues in the form of facial expres-
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sions, specifically by learning a value function over these facial expressions.

On the other hand, the agent without face valuing can rely only on the user-

generated reward signals for identifying the correct grip for a given object. In

tasks with many possible outcomes, for example a task with many object-grip

combinations, relying only on the reward channel to communicate user intents

is not a scalable or sustainable approach.

From our experiments, we can clearly see that the face-valuing approach al-

lows the agent to perceive an evaluative feedback directly from the user’s facial

expression cues, thereby allowing the agent to figure out the user’s preferences

in a given task. Our results suggests that, by learning a value function over

the user’s facial expression cues, the agent can adapt quickly to the user’s pref-

erences, requiring less explicit corrective feedback from the user. The learning

process took place as follows: during the initial phase of the experiment, the

agent used the occasionally provided explicit feedback to learn value function

over the user’s facial expressions. These cues served as useful clues about the

future rewards that the agent would receive by following its current behavior,

thereby guiding and adapting its behavior.

Limitations of using action-value methods in our approach. The

approach we introduced in this thesis involves learning from whatever subtle

cues the user produces while interacting with an agent. It is important to

note here that these body language cues and their association with future

rewards are task independent, meaning that this learned function can be used

in different tasks than the ones used for initial training. Particularly, we

can think of scenarios where the user interacts with a simulator where the

agent learns to pick on different cues specific to the user and later share this

learning with a real-world machine, like a prosthetic arm or an autonomous

car. Sharing and transferring the learning from a user across tasks improves

the overall experience across these tasks, as it would involve much less training

when compared to learning from scratch.

An action-value implementation of face valuing does not exactly conform

to this idea of transferability across different domains and tasks, because of the

fact that the values and policy are closely coupled as action-values. It would
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be desirable to design an approach which learns a value function based on the

user’s body language independent of the action-selection policy, so that we can

share this value function across domains and learn the policy from scratch.
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Chapter 6

Using Actor-Critic To Learn
From Prospective Body
Language

In the previous chapters, we introduced our idea for teaching machines through

prospective body language and an action-value approach for achieving this idea

as an implemented system. Also, we introduced the process of constructing the

state space for a face-valuing agent, along with a simulated grip-selection task

for evaluating our approach. Using this simulated task, we conducted exper-

iments comparing the face-valuing agent with a conventional user-interactive

agent.

In this chapter, we introduce an actor-critic architecture for implementing

our idea for learning from body language. Specifically, using a Sarsa agent

estimates the utility of each action that is available in a given state. This

means that the method relearns information when they can actually be reused

across these actions. More importantly, an action-value approach does not

easily allow in transferring the learned value function across domains. To

address this specific issue, we introduce an actor-critic approach that reduces

the number of parameters that need to be learned to solve a task and easily

allows in sharing this learned value function across multiple domains, without

losing its advantage over a conventional user-interactive agent that learns from

user-generated rewards.
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6.1 Implementation using an Actor-Critic Method

The setup used in the following experiments are the same as described in

the previous chapter. The approach involves a user interacting with an imple-

mented learning agent in a human-computer collaborative task, where the user

needs to communicate their preferences effectively in order quickly complete

the given tasks. Here, user preferences are over the grips for the agent in order

to complete the task quickly.

In the following section, we describe the actor-critic architecture that we

use for implementing our face-valuing agent.

Actor-critic methods are popular reinforcement learning approaches that

consists of two separable learning modules, namely the actor and critic. The

actor is responsible for learning a policy that is used for selecting an action for

a given state and the critic critiques the actions selected by the actor module.

Specifically, the critic generated the error signal that drives learning in both

these modules.

The actor learns a function that produces the likelihood of choosing an

action for a given state within the environment. The actor usually increases

the likelihood of picking an action if it produced a higher than average TD-

error for a given state and otherwise it reduces its likelihood. The critic module

learns the state-value estimates for the states observed by the agent during its

interaction with the environment. A standard TD(λ) algorithm is used for

learning these state estimates.

In this face-valuing approach, user satisfaction is formalized as the critic’s

value function of a learning agent and is learned through temporal-difference

learning methods. The actor module learns a policy that chooses actions

according to the critic’s estimate for a given state.

In the actor-critic method, the action selection behavior is learned directly

from rewards received over time, instead of learning action-value estimates

and then computing an action-selection policy. Specifically, the actor module

learns an action-selection policy π which is parameterized by θ ∈ Rn. This

policy π(s|θ) is like a function that takes in the state as input and produces the
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Algorithm 5 Face Valuing: Implementation using Actor-Critic Method

INPUT: αv, απ, λ, γ,winit,θinit
w ← winit . w is the weight vector for the critic
θ ← θinit . θ is the weight vector for the actor
ew ← 0 . ew is the eligibility trace for the critic
eθ ← 0 . eθ is the eligibility trace for the actor
for num. of episodes do

obtain initial state S and φ(S) from facial features
while S is not terminal do

select action A for state S (using ψ(S))
take action A, observe S ′ and R
δ ← R + γw>φ(S ′)−w>φ(S)
ew ← γλew + φ(S)
w ← w + αvδew
eθ ← γλeθ +∇θlog[π(A|S,θ)]
θ ← θ + απδeθ
S ← S ′

φ(S)← φ(S ′)
end while

end for

probability of each action available within the environment. The actor-critic

method also consists of a critic module that critiques the actions selected

by the actor. This critic is parameterized by a different set of parameters

w ∈ Rn. Usually, a standard TD learning algorithm (as described in the

background section), is used for learning the critic’s parameters. Also, this

TD-error generated by the critic drives the learning in the actor module. In

simple terms, the actor module learns to increase the likelihood of picking an

action for a given state when it produces a positive TD-error. Otherwise, this

likelihood decreases.

The state representation is usually shared between actor and critic modules.

However, here, we choose to use the critic’s predictions of the current state

as input to the actor module (denoted as ψ(S) in Algorithm 5). Intuitively,

it makes sense to pick one action when the state has a larger estimate of

expected reward and pick the other action when the state has a smaller value

estimate, especially in domains where the action space can be parameterized

as a continuous spectrum between two opposing actions. Correspondingly, for
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the states whose estimates lie between these two extremes, the actions lying

across this spectrum is picked. This is particularly achieved by our modified

actor-critic approach and is described as pseudocode in Algorithm 5. However,

for our experiments, we use a discrete action space. Furthermore, the potential

trade-offs of using these two algorithms for implementing face valuing approach

are discussed later.

6.2 Experiments and Results

The experiments and results in this section involved a comparison between two

types of learning agents: one with access to the task-specific features and the

other with access to face-valuing features. The agent which uses only the task-

specific features does not have access to face-valuing features. Throughout the

course of the experiment, the user did not know the type of agent that is

currently interacting. In other words, the experiments were conducted in a

blind manner. Each experiment consisted of 15 episodes.

Figure 6.1: Left Total time steps taken to complete the infinite object setting
by the actor-critic agents. Right Total time steps taken to complete the infi-
nite object setting. Experiment performed by 5 different users with no prior
experience in this task.

In this experiment, the simulated grip-selection task consisted of a finite
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number of grips. At the beginning of each episode, a new object was generated

and presented to the interacting user. This object was located at a distance

from the location where the agent and its grip are spawned. The objective for

the learning agent here is to complete a grasp of this given object successfully

by using one of the appropriate grips chosen from this limited set of grips.

It is important to note here that the agent can switch its grip only at the

grip-changing station. The agent cannot switch its grips when it is away from

this grip-changing station.

This experiment was designed to show the performance improvement achieved

through our face-valuing approach in a difficult and a realistic task, where the

agent needs to grasp a new object that is generated in each new episode. The

experiment tests the utility of reusing the agent’s previous learning experiences

within the grip-selection task.

Each experiment involved 15 episodes and the results obtained from our

experiments are reported in Figure 6.1. The figure on the left was obtained

from a user who had previous experience interacting with the face-valuing

agent and the simulator and the figure on the right was obtained from 5 dif-

ferent users who had no prior experience with the approach or the simulator.

The graphs report the cumulative time taken by the corresponding learning

agents in completing a set of 15 episodes, each of which involved the agent in

selecting an appropriate grip and successfully grasping a new object.

From the plots, it is clearly observed that the face-valuing agent achieves

a much better performance that a conventional agent that learns from user-

generated rewards. Particularly, the face-valuing agent has the ability to reuse

its previous learning experiences to solve new tasks, where this ability arises

from the state space constructed using the user’s body language cues. On the

contrary, the task-specific agent operates with a state space that has no poten-

tial to reuse or leverage from previous experiences as each episode generates a

new object.

A standard t-test between the learning performances of the agents with

and without face valuing gives a value of 0.005 (for Figure 6.1(Left)) and a

value of 0.02 (for Figure 6.1(Right)), meaning that the results are statistically
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significant. These values were obtained from a paired t-test using a two-tailed

distribution.

6.3 Discussion

In this chapter, we introduced an actor-critic approach for face valuing, which

learned a value function grounded in the user’s facial expressions, independent

of the action-selection policy. The motivation behind this is that, ideally, we

would want to share this learned value function across multiple domains as

this is task-independent. Particularly, the user’s body language would remain

the same, have the same meaning, irrespective of the task the machine is

performing. We can leverage this insight by sharing the learned value function

to different tasks, and as a result, improve the overall user experience with the

machine. It is important to note here that this actor-critic approach allows in

transferring the learned value function across multiple domains without much

effort, and this is not possible in the action-value version of face valuing.

In the actor-critic implementation of face valuing, the policy operates over

a state space that is based on the critic’s estimate. Specifically, the critic’s

value estimate is tile-coded using a one dimensional tilecoder and this forms the

state representation for the actor module. This is a simple representation of the

actor module because, essentially, the module learns to pick one action when

the estimate is below a certain threshold. Otherwise, it learns to pick other

actions. Such a policy representation is suitable only for certain tasks, like

navigation or tasks with binary choices. The representation capability of this

actor module is sufficient to learn a policy over a linear spectrum of an action.

For example, if the agent is learning to navigate, we can formulate a continuous

action space for such a domain where an action at one end of the spectrum can

move the agent forward with maximum speed and an action at the opposite end

of this spectrum moves the agent in reverse with maximum speed. Similarly,

the actions between this spectrum produces similar consequences with slower

speeds.
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Chapter 7

Discussions and Extensions:
From Facial Expressions to
Body Language

In this thesis, we introduced approaches that allows users to communicate with

their machines through simple and intuitive channels, specifically, through

their body language cues. These cues are used to forecast the machine’s future

rewards and because of this, these cues are called prospective body language

cues. We strongly believe that this work would serve as the first steps towards

building more natural and high bandwidth channels of communication between

humans and machines.

There are many scopes for improving our approach in order to handle

different and complex forms of cues generated by the user, thereby moving

closer towards achieving intelligence amplification. Making progress in these

avenues should produce many successful human-computer collaborations, es-

pecially those that are suitable for many real-world domains.

In this chapter, we discuss a few important questions related to our ap-

proach and the potential future directions for extending our approach.

7.1 What is Missing in Existing Human-

Machine Interaction Approaches?

Human-machine interaction approaches are supposed to enable people in form-

ing effective collaborations with their machines, resulting in people amplifying
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their cognitive and physical capabilities. In order to accomplish this ambitious

objective, the process of communication between people and machines need

to closely follow the principles underlying human communication, so that the

process of communication between these domains are comparable.

Human communication is natural and intuitive because it relies on both

speech and body language. In this thesis, we focus on using subtle body

language cues to improve human-machine interaction, similar to how body

language is used in human communication. Particularly, in human communi-

cation, body language cues influence the behavior of their observers and are

produced involuntarily without much effort. As a first step towards achiev-

ing sustainable human-machine interaction, we introduced our approach that

allows people to naturally teach their machines using subtle body language

cues, that are produced during the process of interaction. As studied in hu-

man communication, the body language of the interacting user influences the

machine’s behavior.

The existing approaches in the field of human-machine interaction are not

comparable to the process of human communication. Specifically, these ap-

proaches do not allow people to communicate naturally with machines as they

do with their peers. The existing approaches that use body language for teach-

ing machines often rely on supervised learning approaches and on the system

designer to map these cues to instructions or rewards.

These supervised approaches require labeled datasets for recognizing the

different non-verbal cues produced by the people. However, it is a diffi-

cult, cumbersome and time-consuming process to create an extensive labeled

dataset for recognizing nuanced non-verbal cues, that are produced by people

in a variety of situations.

The existing approaches to human-machine interaction map body language

to instructions or rewards, assuming that these non-verbal cues have similar

meaning across different people. The body language of people differs with their

situations and preferences. In such cases, the machines requires those users’ to

produce unnatural cues in order to effectively teach them. Similar unintuitive

process occurs in approaches that use body language as instructions to the
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machine.

Ideally, the meaning of these cues needs to be learned from ongoing inter-

actions by the machine as different cues can have different meanings and these

depend on the people who produce them.

In this thesis, we introduced an approach that does not rely on large super-

vised learning datasets for teaching machines through body language. More

importantly, our approach learns the meaning of these cues as they are pro-

duced by the user during ongoing interactions, thereby alleviating this prob-

lem of creating an extensive dataset or hand-engineering their meaning to the

machine. By learning the meaning of these cues, the users can teach their

machines to behave according to their preferences. We would like to point

out here that this is a significant contribution and is vastly different from

conventional human-machine interaction approaches.

7.2 How Does Our Approach Differ from Ap-

proaches that Learn from User-Generated

Rewards?

In the previous section, we discussed the significance of our prospective body

language approach over existing human-machine interaction approaches that

use body language. In this section, we draw out the important differences

between ours and those that learn from user-generated rewards.

Many approaches, like the ones introduced by Knox and Stone (2009)

and by Iturrate et al. (2015), were developed recently for improving human-

machine interaction through reinforcement learning. These techniques allow

the user to directly manipulate the existing reward channel through user-

generated rewards, thereby teaching the machine to act according to their

preferences. In these approaches, the user generates rewards, which comple-

ments the reward signal from the environment. Using this combined reward

signal, the agent learns and adapts its behavior in order to maximize its re-

wards.

These approaches to human-machine interaction requires constant super-
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vision from the user in the form of user-generated rewards throughout the

operation of the machine. This contradicts the objective of human-machine

interaction, which is that the agent needs to complete a task according to their

user preferences without involving much effort from the user. More specifically,

these interaction techniques should not require constant supervision from their

users. In order to meet this requirement, the machines needs to have some

level of autonomy and not expect expensive feedback throughout the course

of its operation.

A simple way of meeting these requirements is by adding the user’s body

language into the existing state space, which is exactly what our approach

does. As a result, the agent learns to predict its future rewards directly from

the user’s body language, which is a powerful source of feedback compared

to user-generated rewards. More importantly, these body language cues are

produced without much effort as opposed to the process of producing user-

generated rewards.

7.3 Do People Produce Non-Verbal Cues While

Interacting With Their Machines?

In the previous chapters, we introduced our approach, where users can teach

their machines using body language cues without involving much effort from

the users. As opposed to existing methods, our approach allows people to

use high-bandwidth channels for communicating feedback to their machines.

However, in our experiments, we assumed that the users produced facial ex-

pression cues during their interactions with their agents. Naturally, this brings

up the following question: do people produce facial expressions or other body

language cues while interacting with their agents?

People often produce subtle body language cues while communicating with

their peers. Many research works in psychology and affective neuroscience

(Adolphs, 2002; De Gelder, 2006; Whalen et al., 2013; Jack & Schyns, 2015;

Scheider et al. 2016) have studied this specific phenomenon. More impor-

tantly, they study why people produce such non-verbal cues and how they
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influence their observers.

It is reasonable to think that people do not produce such subtle cues while

interacting with machines. However, recently, Fridman et al. (2017) discov-

ered that people produce significant body language while interacting with their

machines. Specifically, their work studied the predictive power of various body

language cues produced naturally by a user while driving a semi-autonomous

car through different environments. More importantly, their results suggest

that these non-verbal cues were powerful enough to predict different aspects

of their environments and about the car, like the traffic density, cruise con-

trol, road conditions, weather, and proximity to an intersection among others.

They created a dataset with 100 users logging in 2 million vehicle miles, which

resulted in 43, 000 hours of supervised training data. The entire process of cre-

ating this dataset and subsequently labeling this data took about 13 months.

Another research work, by Abdić et al. (2016), studied how useful these

body language cues were for predicting their satisfaction. They used a dataset

obtained from a user study, which involved the users to drive a car and operate

a voice-based navigation system. The users’ faces along with their conversation

with the navigation system were recorded and labeled with their satisfaction

level. The authors trained a supervised learning approach over this dataset

and found that their approach predicted the user satisfaction with significant

accuracy. More importantly, they reported that the visual stream containing

the driver’s face was more predictive of their satisfaction than their conversa-

tion with the navigation system.

From these research works, it is clear that people do produce natural non-

verbal cues while interacting with their machines. More recently, Fridman et

al. (2017a) and Fridman et al. (2017b) are beginning to build upon these

results, by designing better user-interfaces for semi-autonomous vehicles.
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7.4 How Does Our Approach Relate to Affec-

tive Computing?

Affective computing is defined as the study and development of systems that

can recognize, interpret, process and simulate human affects, where an affect

is the experience of a feeling or emotion. Sometimes, affect is also defined

as facial, vocal or gesture behavior that serves as a response to a stimuli.

The motivation of affective computing is to simulate empathy in computers.

In short, affective computing machines need to interpret the state of mind of

people and adapt its behavior towards them. This modern field was formalized

by Rosalind Picard in the seminal paper published in 1995.

From the definitions of affective computing, it is clear that our prospective

body language approach fits these requirements. Specifically, our approach

seems to be the initial steps towards building a complete system that identi-

fies the user’s state of mind from their body language and subsequently adapts

their behavior towards them. It is also important to point out here that the

existing research works in affective computing rely on supervised learning ap-

proaches for recognizing different affects from the user. It is surprising to see

that our work is the first to comprehensively address this affective comput-

ing problem, without making any assumptions about the user’s body language.

Also, reinforcement learning seems to be promising approach for affective com-

puting.

7.5 Better Feature Representations for

Nuanced Body Language

The most important aspect that needs to be improved upon in our approach

would be the feature representation that forms the state representation of the

agent.

In the experiments described in this thesis, we processed facial landmarks

of the interacting user, which was extracted at each time step. These facial

landmarks formed the feature representation to the agent. Such a feature
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representation is not powerful enough to encode cues that extend for many

time steps, like nodding the head or curling the lips. People often produce

such nuanced body language cues, which contain significant communicative

value to the agent. By using better feature representations, the agent can

learn from such nuanced cues, and as a result, produce better user experience.

A better approach towards building powerful feature representation would

involve the recent advances made in the field of representation learning. In re-

cent times, the trend is to learn features directly from the data by minimizing

some objective function. These representation learning approaches involves

constructing a hierarchical network structure, called a neural network, whose

parameters are tuned through gradient-based optimization algorithms to solve

a given task. This hierarchical organization enables these networks to learn

nonlinear feature representations directly from the data, substantially improv-

ing its performance.

This approach of learning hierarchical representations grounded directly in

the data has achieved significant state of the art results in many domains, like

translating languages (Cho et al., 2014), predicting patient survival (Miotto et

al., 2016), playing poker (Moravč́ık et al., 2017), Go (Silver et al., 2016) and

atari (Mnih et al., 2015). The performance improvements obtained through

these hierarchical representation learning methods are many-folds over con-

ventional hand-engineered methods.

We hypothesize that, by using neural networks, our approach can learn

temporally extended and nuanced body language cues produced by the user,

resulting in more powerful interaction techniques between people and their

machines.

7.6 Integrating Different Modalities

Our approach of teaching a machine using prospective body language was moti-

vated by the importance of improving human-machine interaction by studying

human communication. However, in order to achieve its complete potential,

we need to integrate this with speech and other body language.
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People produce many different body language that range across multiple

modalities and they usually differ with people. For example, people tend to

accentuate their hands while they speak. Sometimes, the posture exhibited

by people also have valuable information about their state of mind. Learn-

ing to understand such body language allows machines to better understand

their user and their preferences. Integrating different modalities would al-

low the machines to better learn about their users and will help the research

community to significantly progress towards the ambitious goal of intelligence

amplification.
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Chapter 8

Conclusion

Body language plays a key role in human communication. These non-verbal

cues complement the speech in human communication and simplify the process

of communication with our peers. More importantly, these cues are produced

naturally during the process of communication and usually have communica-

tive value. Our peers on observing these cues subsequently adapt their behav-

ior towards us.

An important goal of artificial intelligence is to amplify our cognitive and

physical capabilities of people through machines. This is called intelligence

amplification. As a first step towards achieving this grand prize, we need to

design sustainable forms of human-machine interaction that closely adheres

to the principles underlying human communication. Specifically, we need to

design approaches that allow humans to communicate naturally with their

machines, similar to how people communicate with each other.

Many of the existing approaches to human-machine interaction that use

body language assume that the meaning of different cues are given to the ma-

chine from some external source. This is not a sound assumption to make

because these cues usually vary with people. As a result, these existing ap-

proaches requires the user to actively translate their non-verbal cues in order

to fit the system design. This process of translation required from the user

is unnatural and causes cognitive load on the user, making these existing ap-

proaches unsustainable. More importantly, these existing approaches do not

address the goal of this thesis — to create approaches that learn from people
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without their really trying.

In this thesis, we introduced our prospective body language approach,

which allows people to teach their machines using whatever body language

cues they produce during the process of interaction. More specifically, these

cues indicate their satisfaction towards the machine’s behavior. First, the

agent learns to predict its future rewards by mapping the user’s body lan-

guage with the occasionally generated explicit feedback. This mapping is

achieved through a value function. Second, after this value function reliably

predicts its future rewards from the cues, the agent perceives these cues as

useful evaluative feedback signals, informing the agent about its performance.

More importantly, the agent utilizes this feedback to adapt its behavior so

as to maximize its rewards and user satisfaction. This process of influencing

behavior through subtle cues is similar to how people adapt their behaviors in

human communication.

As opposed to the existing approaches, our method does not require any

supervised learning datasets for recognizing the subtle cues produced by the

user. Crucially, our method does not assume anything regarding the user’s

body language as our method learns the meaning of these cues through ongoing

interactions with the user. As a result, our approach does not require the user

to translate their cues according to the system design. We believe this to be

the first work in directly addressing the overall goal of this thesis, where an

implemented system learns from people without involving much effort from

the people.

We expect that the our prospective body language approach can be easily

extended to many real-world human-machine interactions domains, like in-

telligent prostheses, and self-driving cars. In the near future, we expect our

general human-machine interaction approach to improve the quality of life for

people by amplifying or augmenting their physical and cognitive capabilities

through machines.
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