MUI	TIPLE CHOICE. Choo	se the one alternativ	e that best complet	es the statement or a	inswers the quest	ion.
	x = +0.080 m and it the x -axis (horizon	k is pulled from its e s released from rest. htal). The velocity of	quilibrium position The block then exect the block at time $t = 0$	at $x = 0$ m to a disperutes simple harmonic = 0.40 s is closest to:	lacement c motion along	1)
	A) 0.8 m/s	B) -0.8 m/s	C) 0.3 m/s	D) -0.3 m/s	E) zero	
			Situation 1			
	angle with the vertical of (0.150 rad) cos[(2.85 rad			e equation		
	2) In Situation 1, the r A) 2.85 kg B) 1.66 kg C) 0.454 kg D) 0.150 kg E) It cannot be	mass of the swinging determined from the		ne pendulum is close	st to:	2)
	3) What happens whe	on a poriodia drivina	force is applied to	vibratina avatam?		3)
	A) The system was B) The system was C) The system was D) The system was the syste	will stop vibrating an will exhibit chaotic m will vibrate at the free will vibrate at its nature at some multiple of	d finally come to a otion. Quency of the drivinal frequency.	stop.	ic or "overtone").	-, <u></u>
at <i>x</i> = <i>x</i> -axi	1-kg block is attached to = 0 m to a position at $x =$ s. The damping force is tity is -2.0 m/s and its $x =$	= +0.687 m and is releproportional to the	eased from rest. Th velocity. When the b	e block then executes block first returns to <i>x</i>	damped oscillation	on along the
	4) In Situation 2, the o	damping coefficient b	is closest to:			4)
	A) 14 kg/s^2	B) $16 \text{ kg/s}2$	C) 18 kg/s^2	D) $20 \text{ kg/s}2$	E) $22 \text{ kg/s}2$	
	0	is propagated in a stable: $y = 0.005 \cos \pi(3x)$ ax-axis, in SI units, is B) -2.7	8t - 14x). The wave			5)
	transverse wave in	ring is fixed and the s the string, whose an y of the wave is absor	tring is kept under aplitude is 5.0 mm,	tension. The vibrator and that propagates	produces a with a velocity of	6)
	Λ 1 '/8	KI'/b	1 1 8 1	1.11.8/1	H 1 X'/	

7) A string, 50 cm long and having a mass of 57 g, is attached to a 910–Hz vibrator at one end. The								
other end of the string is fixed and the string is kept under tension. The vibrator produces a transverse wave in the string, whose amplitude is 6.0 mm, and that propagates with a velocity of 25 m/s. The energy of the wave is absorbed at the fixed end. In this situation, the average power transmitted by the wave, in SI units, is closest to:								
A) 1700	B) 2500	C) 3400	D) 4200	E) 5100				
8) Which of the following is a FALSE statement? A) In a transverse wave the particle motion is perpendicular to the velocity vector of the								
wave.B) Not all waves are mechanical in nature.C) The speed of a wave and the speed of the vibrating particles that constitute the wave are different entities.								
D) Waves transport energy and matter from one region to another.E) A wave in which particles move back and forth in the same direction as the wave is moving is called a longitudinal wave.								
9) A string, 0.23 m long, vibrating in the $n = 2$ harmonic, excites an open pipe, 0.82 m long, into its $n = 3$ harmonic. The speed of sound in air is 345 m/s. The number of antinodes in the standing wave pattern of the pipe is: A) 4 B) 2 C) 3 D) 5 E) 6								
10) At one instant of time two transverse waves are traveling in the same direction along a stretched string. They are described in SI units by $y_1 = 0.05 \cos 5x$ and $y_2 = 0.05 \sin 5x$								
How far from the o	-							
A) 0.16 m	B) 0.31 m	C) 0.63 m	D) 0.10 m	E) 0.20 m				
11) Two violinists are trying to tune their instruments in an orchestra. One is producing the desired frequency, 440 Hz. The other is producing a frequency of 448.4 Hz. By what percentage should the out-of-tune musician change the tension in his string to bring his instrument into tune at								
440 Hz? A) 2.0%	B) 1.0%	C) 0.5%	D) 4.0%	E) 0.6%				
12) Which of the follow A) Phase B) Wavelength C) Amplitude D) Period	ving increases whe	n a sound becomes	louder?		12)			
E) Velocity								