MATH 314 Assignment #1

due on Wednesday, September 14, 2016

- 1. Let A, B, C, and X be sets. Prove the following statements:
 - (a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
 - (b) $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B).$
- 2. Use the principle of mathematical induction to prove the following statements:
 - (a) $1 + 3 + \dots + (2n 1) = n^2$ for all $n \in \mathbf{N}$.
 - (b) $2^n > n^2$ for all $n \ge 5$.
- 3. Let A, B, C be sets, and let $f : A \to B$ and $g : B \to C$ be functions. Prove the following statements.
 - (a) If f and g are injective, then $g \circ f$ is injective.
 - (b) If f and g are surjective, then $g \circ f$ is surjective.
 - (c) If f and g are bijective, then $g \circ f$ is bijective.
 - (d) If f and g are bijective, then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- 4. Let a and b be two elements of an ordered commutative ring. Prove the following statements.
 - (a) $|a| |b| \le |a b|$.
 - (b) $||a| |b|| \le |a b|.$
 - (c) $2\max\{a,b\} = (a+b) + |a-b|$.
 - (d) $2\min\{a,b\} = (a+b) |a-b|.$
- 5. Let a, b, c, and d be elements of an ordered field. Prove the following statements.
 - (a) If bd > 0, then $a/b < c/d \Leftrightarrow ad bc < 0$.
 - (b) If bd > 0 and a/b < c/d, then

$$\frac{a}{b} < \frac{a+c}{b+d}.$$