MATH 314

1. Let A, B, C, and X be sets. Prove the following statements:
(a) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
(b) $X \backslash(A \cap B)=(X \backslash A) \cup(X \backslash B)$.
2. Use the principle of mathematical induction to prove the following statements:
(a) $1+3+\cdots+(2 n-1)=n^{2}$ for all $n \in \mathbf{N}$.
(b) $2^{n}>n^{2}$ for all $n \geq 5$.
3. Let A, B, C be sets, and let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Prove the following statements.
(a) If f and g are injective, then $g \circ f$ is injective.
(b) If f and g are surjective, then $g \circ f$ is surjective.
(c) If f and g are bijective, then $g \circ f$ is bijective.
(d) If f and g are bijective, then $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.
4. Let a and b be two elements of an ordered commutative ring. Prove the following statements.
(a) $|a|-|b| \leq|a-b|$.
(b) $||a|-|b|| \leq|a-b|$.
(c) $2 \max \{a, b\}=(a+b)+|a-b|$.
(d) $2 \min \{a, b\}=(a+b)-|a-b|$.
5. Let a, b, c, and d be elements of an ordered field. Prove the following statements.
(a) If $b d>0$, then $a / b<c / d \Leftrightarrow a d-b c<0$.
(b) If $b d>0$ and $a / b<c / d$, then

$$
\frac{a}{b}<\frac{a+c}{b+d}
$$

