MATH 314 Assignment #2

due on Wednesday, September 21, 2016

- 1. (a) Prove that there is no rational number r such that $r^2 = 3$.
 - (b) Prove that $a + b\sqrt{2}$ is an irrational number for all rational numbers a and b with $b \neq 0$.
- 2. Let x and y be real numbers. Prove the following statements.
 - (a) If x > 0, then there exists a unique natural number n such that $n 1 < x \le n$.
 - (b) If 0 < y < 1, then there exists a unique integer $n \ge 2$ such that

$$\frac{1}{n} \le y < \frac{1}{n-1}.$$

- 3. Write the following sets in interval notation:
 - (a) $\{x \in \mathbb{R} : |x 2| < 3\}$ (b) $\{x \in \mathbb{R} : |2x + 1| \ge 5\}$
 - (c) $\{x \in \mathbb{R} : x^2 < 8\}$ (d) $\{x \in \mathbb{R} : x^3 \le 8\}$

4. For each set below, find its maximum, supremum, minimum, and infimum if they exist.

- (a) (0,3] (b) $\{1-1/n : n \in \mathbb{N}\}$
- (c) $\mathbb{R} \setminus [1, \infty)$ (d) $\{n (-1)^n : n \in \mathbb{N}\}$
- 5. Let A be a nonempty bounded subset of \mathbb{R} , and let $s := \sup A$.
 - (a) Show that $s \in A$ if and only if $s = \max A$.
 - (b) Let $-A := \{-x : x \in A\}$. Prove that $\inf(-A) = -s$.