MATH 314 Assignment \#2

due on Wednesday, September 21, 2016

1. (a) Prove that there is no rational number r such that $r^{2}=3$.
(b) Prove that $a+b \sqrt{2}$ is an irrational number for all rational numbers a and b with $b \neq 0$.
2. Let x and y be real numbers. Prove the following statements.
(a) If $x>0$, then there exists a unique natural number n such that $n-1<x \leq n$.
(b) If $0<y<1$, then there exists a unique integer $n \geq 2$ such that

$$
\frac{1}{n} \leq y<\frac{1}{n-1}
$$

3. Write the following sets in interval notation:
(a) $\{x \in \mathbb{R}:|x-2|<3\}$
(b) $\{x \in \mathbb{R}:|2 x+1| \geq 5\}$
(c) $\left\{x \in \mathbb{R}: x^{2}<8\right\}$
(d) $\left\{x \in \mathbb{R}: x^{3} \leq 8\right\}$
4. For each set below, find its maximum, supremum, minimum, and infimum if they exist.
(a) $(0,3]$
(b) $\{1-1 / n: n \in \mathbb{N}\}$
(c) $\mathbb{R} \backslash[1, \infty)$
(d) $\left\{n-(-1)^{n}: n \in \mathbb{N}\right\}$
5. Let A be a nonempty bounded subset of \mathbb{R}, and let $s:=\sup A$.
(a) Show that $s \in A$ if and only if $s=\max A$.
(b) Let $-A:=\{-x: x \in A\}$. Prove that $\inf (-A)=-s$.
