MATH 314 Assignment #3

due on Friday, September 30, 2016

- 1. (a) Prove that $\lim_{n\to\infty} \sqrt{n} = \infty$ and $\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$.
 - (b) Prove that if $\lim_{n\to\infty} a_n = a$, then $\lim_{n\to\infty} |a_n| = |a|$. Is the converse true? Justify your answer.
- 2. For each sequence below find its limit and determine whether it converges.

(a)
$$a_n = \frac{3n^2 - 2n^3}{5 + n^3 + 2n}$$
 (b) $b_n = \frac{1 - n^9}{100n^8 + 9n^2}$
(c) $c_n = \frac{3^n + 2^n}{3^n - 4^n}$ (d) $d_n = \sqrt{n + 2} - \sqrt{n}$

- 3. Let $x_n := \sqrt{n^2 + n} n$ for $n \in \mathbb{N}$.
 - (a) Prove that

$$x_n = \frac{n}{\sqrt{n^2 + n} + n}.$$

- (b) Show that $2n \leq \sqrt{n^2 + n} + n \leq 2n + 1$.
- (c) Deduce from (a) and (b) that

$$\frac{n}{2n+1} \le x_n \le \frac{1}{2}.$$

- (d) Find $\lim_{n\to\infty} x_n$.
- 4. Let $a_1 := 1$ and set $a_{n+1} := (2a_n + 5)/6$ for n = 1, 2, ...
 - (a) Find the first five terms of the sequence $(a_n)_{n=1,2,\ldots}$.
 - (b) Use mathematical induction to prove that $a_n \leq 2$ for all $n \in \mathbb{N}$.
 - (c) Use mathematical induction to show that the sequence $(a_n)_{n=1,2,...}$ is increasing.
 - (d) Prove that the sequence $(a_n)_{n=1,2,\ldots}$ is convergent and find $\lim_{n\to\infty} a_n$.

5. Let $b_1 := 1$ and set $b_{n+1} := \sqrt{2b_n}$ for n = 1, 2, ...

- (a) Prove that the sequence $(b_n)_{n=1,2,...}$ is increasing and bounded above by 2.
- (b) Show that the sequence $(b_n)_{n=1,2,\dots}$ is convergent and find $\lim_{n\to\infty} b_n$.