MATH 314

1. (a) Prove that $\lim _{n \rightarrow \infty} \sqrt{n}=\infty$ and $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$.
(b) Prove that if $\lim _{n \rightarrow \infty} a_{n}=a$, then $\lim _{n \rightarrow \infty}\left|a_{n}\right|=|a|$. Is the converse true? Justify your answer.
2. For each sequence below find its limit and determine whether it converges.
(a) $a_{n}=\frac{3 n^{2}-2 n^{3}}{5+n^{3}+2 n}$
(b) $b_{n}=\frac{1-n^{9}}{100 n^{8}+9 n^{2}}$
(c) $c_{n}=\frac{3^{n}+2^{n}}{3^{n}-4^{n}}$
(d) $d_{n}=\sqrt{n+2}-\sqrt{n}$
3. Let $x_{n}:=\sqrt{n^{2}+n}-n$ for $n \in \mathbb{N}$.
(a) Prove that

$$
x_{n}=\frac{n}{\sqrt{n^{2}+n}+n} .
$$

(b) Show that $2 n \leq \sqrt{n^{2}+n}+n \leq 2 n+1$.
(c) Deduce from (a) and (b) that

$$
\frac{n}{2 n+1} \leq x_{n} \leq \frac{1}{2}
$$

(d) Find $\lim _{n \rightarrow \infty} x_{n}$.
4. Let $a_{1}:=1$ and set $a_{n+1}:=\left(2 a_{n}+5\right) / 6$ for $n=1,2, \ldots$.
(a) Find the first five terms of the sequence $\left(a_{n}\right)_{n=1,2, \ldots}$.
(b) Use mathematical induction to prove that $a_{n} \leq 2$ for all $n \in \mathbb{N}$.
(c) Use mathematical induction to show that the sequence $\left(a_{n}\right)_{n=1,2, \ldots}$ is increasing.
(d) Prove that the sequence $\left(a_{n}\right)_{n=1,2, \ldots}$ is convergent and find $\lim _{n \rightarrow \infty} a_{n}$.
5. Let $b_{1}:=1$ and set $b_{n+1}:=\sqrt{2 b_{n}}$ for $n=1,2, \ldots$.
(a) Prove that the sequence $\left(b_{n}\right)_{n=1,2, \ldots}$ is increasing and bounded above by 2 .
(b) Show that the sequence $\left(b_{n}\right)_{n=1,2, \ldots}$ is convergent and find $\lim _{n \rightarrow \infty} b_{n}$.

