MATH 314 Assignment #4
due on Friday, October 7, 2016

1. (a) Let a, := 2(—=1)"*' + (=1)(»+D/2 for n € IN. Find four subsequences of

(@n)n=1,2,.. such that they converge to different limits.

(b) Let b, := [1 + (—=1)"|]n 4+ 100/n for n € IN. Find an increasing subsequence of

(bn)n=12,.... Also, find a convergent subsequence of (by,)n=12,....

2. Let (#n)n=1,2,... be the sequence recursively defined by x; := 1 and
L 5
Tpt1 1= Z(:z;n +2), nelN.

(a) Show that 0 < x,, <1 for all n € IN.
(b) Prove that the sequence (z,)n=1,2,... is contractive.
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(c) Show that the sequence (z,,)n=1,2,. .. converges and find its limit.

3. Find the sum of the following series.
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4. Test each of the following series for convergence or divergence. If the series converges,

determine whether it converges absolutely or conditionally. Justify your conclusions.
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5. Suppose that Y2 a, and Y .-, b, are two convergent series.
(a) Show that the sequence (by,)n=1,2,... is bounded.

(b) If, in addition, Y 7, a, converges absolutely, prove that the series Y -  a,b,

also converges absolutely.

(c) Give an example of two conditionally convergent series Y - a, and Y - b,

such that the series Zzozl anby diverges.



