MATH 314 Assignment \#5

due on Friday, October 14, 2016

1. Find the following limits.
(a) $\lim _{x \rightarrow 1} \frac{x^{2}+2 x-3}{x^{2}-1}$.
(b) $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}$.
2. Find the following limits.
(a) $\lim _{x \rightarrow \infty} \frac{2-5 x-4 x^{2}}{3 x^{2}+1}$.
(b) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+2 x}-x\right)$.
3. Let $f(x)=\sqrt{4-x}$ for $x \leq 4$ and $g(x)=x^{2}$ for all $x \in \mathbb{R}$.
(a) Give the domains of the functions $f+g, f g, f \circ g$ and $g \circ f$.
(b) Find the values $f \circ g(0), g \circ f(0), f \circ g(1), g \circ f(1), f \circ g(2)$ and $g \circ f(2)$.
(c) Are the functions $f \circ g$ and $g \circ f$ equal?
(d) Are $f \circ g(3)$ and $g \circ f(3)$ meaningful?
4. Let f and g be two functions from \mathbb{R} to \mathbb{R}. Prove the following statements.
(a) If f is continuous, then the function $|f|$ is continuous.
(b) If f and g are continuous, then the function $\max \{f, g\}$ is continuous.
5. Let $f(x):=1+x^{2}$ and $g(x):=x\left(1-x^{2}\right), x \in \mathbb{R}$. Moreover, let h be the function defined by

$$
h(x):= \begin{cases}1 & \text { if } x \geq 0 \\ -1 & \text { if } x<0\end{cases}
$$

(a) Prove that $f \circ h$ and $h \circ f$ are continuous functions from \mathbb{R} to \mathbb{R}.
(b) Find the set of discontinuity points of $g \circ h$ and $h \circ g$, respectively.

