MATH 314 Assignment #5

due on Friday, October 14, 2016

1. Find the following limits.

(a)
$$\lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 - 1}$$
.
(b) $\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}$.

2. Find the following limits.

(a)
$$\lim_{x \to \infty} \frac{2 - 5x - 4x^2}{3x^2 + 1}$$
.
(b) $\lim_{x \to \infty} (\sqrt{x^2 + 2x} - x)$.

- 3. Let $f(x) = \sqrt{4-x}$ for $x \le 4$ and $g(x) = x^2$ for all $x \in \mathbb{R}$.
 - (a) Give the domains of the functions f + g, fg, $f \circ g$ and $g \circ f$.
 - (b) Find the values $f \circ g(0), g \circ f(0), f \circ g(1), g \circ f(1), f \circ g(2)$ and $g \circ f(2)$.
 - (c) Are the functions $f \circ g$ and $g \circ f$ equal?
 - (d) Are $f \circ g(3)$ and $g \circ f(3)$ meaningful?
- 4. Let f and g be two functions from \mathbb{R} to \mathbb{R} . Prove the following statements.
 - (a) If f is continuous, then the function |f| is continuous.
 - (b) If f and g are continuous, then the function $\max\{f,g\}$ is continuous.
- 5. Let $f(x) := 1 + x^2$ and $g(x) := x(1 x^2), x \in \mathbb{R}$. Moreover, let h be the function defined by

$$h(x) := \begin{cases} 1 & \text{if } x \ge 0, \\ -1 & \text{if } x < 0. \end{cases}$$

- (a) Prove that $f \circ h$ and $h \circ f$ are continuous functions from \mathbb{R} to \mathbb{R} .
- (b) Find the set of discontinuity points of $g \circ h$ and $h \circ g$, respectively.