MATH 314 Assignment #6

due on Friday, October 21, 2016

- 1. Let f be a continuous function from \mathbb{R} to \mathbb{R} such that $\lim_{|x|\to\infty} f(x) = \infty$, that is, for any real number M, there exists a positive real number K such that f(x) > M whenever $|x| \ge K$.
 - (a) Fix a point $x_0 \in \mathbb{R}$. Prove that there exists a positive real number a such that $-a \le x_0 \le a$ and that $f(x) \ge f(x_0)$ whenever $x \notin [-a, a]$.
 - (b) Show that there exists some $c \in \mathbb{R}$ such that $f(c) \leq f(x)$ for all $x \in \mathbb{R}$, that is, f attains its minimum at c.
- 2. The Intermediate Value Theorem will be used in the following problems.
 - (a) Show that the equation $2^x = 3x$ has a solution $c \in (1, 4)$.
 - (b) Let p be a cubic polynomial, *i.e.*, $p(x) = a_3x^3 + a_2x^2 + a_1x + a_0$, $x \in \mathbb{R}$, where $a_3 \neq 0$. Prove that p has at least one real root.
- 3. (a) Suppose that f is a continuous function from $[0, \infty)$ to IR. Moreover, there exists some a > 0 such that f is uniformly continuous on $[a, \infty)$. Prove that f is uniformly continuous on $[0, \infty)$.
 - (b) Let g be the function from $[0, \infty)$ to \mathbb{R} given by $g(x) = \sqrt{x}, x \ge 0$. Prove that g is uniformly continuous on $[0, \infty)$.
- 4. Let f be a real-valued function defined by

$$f(x) = \begin{cases} 2^x & \text{for } 0 \le x \le 1, \\ 3 - 1/x^2 & \text{for } 1 < x \le 2. \end{cases}$$

- (a) Show that f is continuous and strictly increasing on [0, 2].
- (b) Find an explicit expression for the inverse function f^{-1} including its domain and range.
- (c) Is f^{-1} continuous on its domain? Justify your answer.
- 5. (a) Let f be the function given by

$$f(x) := \begin{cases} 3^{-1/|x|} & \text{for } x \in (-\infty, 0) \cup (0, \infty), \\ 0 & \text{for } x = 0. \end{cases}$$

Find $\lim_{x\to 0^-} f(x)$ and $\lim_{x\to 0^+} f(x)$. Is f continuous on $(-\infty,\infty)$? Justify your answer.

(b) Let $g(x) := \log_2 x$ for $0 < x < \infty$. Prove that g is not uniformly continuous on the interval (0, 1).