MATH 314 Assignment \#6

due on Friday, October 21, 2016

1. Let f be a continuous function from \mathbb{R} to \mathbb{R} such that $\lim _{|x| \rightarrow \infty} f(x)=\infty$, that is, for any real number M, there exists a positive real number K such that $f(x)>M$ whenever $|x| \geq K$.
(a) Fix a point $x_{0} \in \mathbb{R}$. Prove that there exists a positive real number a such that $-a \leq x_{0} \leq a$ and that $f(x) \geq f\left(x_{0}\right)$ whenever $x \notin[-a, a]$.
(b) Show that there exists some $c \in \mathbb{R}$ such that $f(c) \leq f(x)$ for all $x \in \mathbb{R}$, that is, f attains its minimum at c.
2. The Intermediate Value Theorem will be used in the following problems.
(a) Show that the equation $2^{x}=3 x$ has a solution $c \in(1,4)$.
(b) Let p be a cubic polynomial, i.e., $p(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}, x \in \mathbb{R}$, where $a_{3} \neq 0$. Prove that p has at least one real root.
3. (a) Suppose that f is a continuous function from $[0, \infty)$ to \mathbb{R}. Moreover, there exists some $a>0$ such that f is uniformly continuous on $[a, \infty)$. Prove that f is uniformly continuous on $[0, \infty)$.
(b) Let g be the function from $[0, \infty)$ to \mathbb{R} given by $g(x)=\sqrt{x}, x \geq 0$. Prove that g is uniformly continuous on $[0, \infty)$.
4. Let f be a real-valued function defined by

$$
f(x)= \begin{cases}2^{x} & \text { for } 0 \leq x \leq 1 \\ 3-1 / x^{2} & \text { for } 1<x \leq 2\end{cases}
$$

(a) Show that f is continuous and strictly increasing on $[0,2]$.
(b) Find an explicit expression for the inverse function f^{-1} including its domain and range.
(c) Is f^{-1} continuous on its domain? Justify your answer.
5. (a) Let f be the function given by

$$
f(x):= \begin{cases}3^{-1 /|x|} & \text { for } x \in(-\infty, 0) \cup(0, \infty) \\ 0 & \text { for } x=0\end{cases}
$$

Find $\lim _{x \rightarrow 0^{-}} f(x)$ and $\lim _{x \rightarrow 0^{+}} f(x)$. Is f continuous on $(-\infty, \infty)$? Justify your answer.
(b) Let $g(x):=\log _{2} x$ for $0<x<\infty$. Prove that g is not uniformly continuous on the interval $(0,1)$.

