MATH 314 Assignment \#7

due on Wednesday, November 16, 2016

1. Let $f(x):=x^{2}$ for $x \geq 0$ and $f(x):=0$ for $x<0$.
(a) Use the definition of derivative to show that f is differentiable at 0 .
(b) Find an explicit expression of $f^{\prime}(x)$ for $x \in \mathbb{R}$.
(c) Is f^{\prime} continuous on \mathbb{R} ? Is f^{\prime} differentiable on \mathbb{R} ?
2. Find the derivative of each of the following functions.
(a) $g(x):=\sqrt[3]{x^{2}}-\frac{1}{x}, x \neq 0$.
(b) $h(x):=\frac{1-x^{2}}{1+x^{2}}, x \in \mathbb{R}$.
(c) $u(x):=\ln \left(x+\sqrt{a^{2}+x^{2}}\right), x \in \mathbb{R}$.
(d) $v(x):=x^{x}, x>0$.
3. Let f be a real-valued function on an open interval I, and let c be a point in I. Prove the following statements.
(a) If f is differentiable at c, then $\lim _{n \rightarrow \infty} n\left[f\left(c+\frac{1}{n}\right)-f(c)\right]=f^{\prime}(c)$.
(b) If f is differentiable at c, then

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-f(c-h)}{2 h}=f^{\prime}(c) .
$$

4. Let $f(x):=x \ln \left(1+\frac{1}{x}\right), 0<x<\infty$.
(a) Compute $\lim _{x \rightarrow \infty} f(x)$.
(b) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ for $0<x<\infty$.
(c) Prove that f^{\prime} is strictly decreasing on $(0, \infty)$ and f is strictly increasing on $(0, \infty)$.

5 . Let f be the function on \mathbb{R} given by

$$
f(x):= \begin{cases}e^{-1 / x} & \text { for } x \in(0, \infty) \\ 0 & \text { for } x \in(-\infty, 0]\end{cases}
$$

(a) Compute $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ for $x>0$.
(b) Show that f is differentiable at 0 and find $f^{\prime}(0)$.
(c) Show that f^{\prime} is differentiable at 0 and find $f^{\prime \prime}(0)$.

