MATH 314 Assignment #8

due on Wednesday, November 23, 2016

- 1. For each of the following functions, determine the interval(s) where the function is increasing or decreasing, and find all maxima and minima.
 - (a) $f(x) := 4x x^4, x \in \mathbb{R}.$

(b)
$$g(x) := \frac{x^2}{1+x^2}, x \in \mathbb{R}$$

- (c) $u(x) := \sqrt{x} x/2, x \ge 0.$
- (d) $v(x) := \frac{x}{1+|x|}, x \in \mathbb{R}.$
- 2. Establish the following inequalities.
 - (a) For 0 < t < 1, prove that $x^t \le tx + (1 t)$ for all x > 0.
 - (b) Prove that $a^t b^{1-t} \le ta + (1-t)b$ for $a \ge 0, b \ge 0$, and 0 < t < 1.
- 3. Let g be the function given by $g(x) := \ln[(1+x)/(1-x)]$ for -1 < x < 1.
 - (a) Find the Taylor series of g about 0.
 - (b) Find the interval of convergence of the power series in (a).
 - (c) Use the power series in (a) to evaluate $\ln 2 = g(1/3)$ accurate to four decimal places.
- 4. Let f be the function on \mathbb{R} defined by

$$f(x) := \begin{cases} x^2 \sin \frac{1}{x} & \text{for } x \in \mathbb{R} \setminus \{0\}, \\ 0 & \text{for } x = 0. \end{cases}$$

- (a) Find f'(x) for for $x \in \mathbb{R} \setminus \{0\}$.
- (b) Prove that f is differentiable at 0 and that f'(0) = 0.
- (c) Show that f' is not continuous at 0.
- 5. Let $u(x) := \arctan x$ and $v(x) := 1/(1+x^2)$ for $x \in (-\infty, \infty)$.
 - (a) Find the Taylor series of v about 0 and its interval of convergence.
 - (b) Find the Taylor series of u about 0 and its interval of convergence.
 - (c) Compute $v^{(6)}(0)$ and $v^{(7)}(0)$.
 - (d) Compute $u^{(6)}(0)$ and $u^{(7)}(0)$.