MATH 314

1. For each of the following functions, determine the interval(s) where the function is increasing or decreasing, and find all maxima and minima.
(a) $f(x):=4 x-x^{4}, x \in \mathbb{R}$.
(b) $g(x):=\frac{x^{2}}{1+x^{2}}, x \in \mathbb{R}$.
(c) $u(x):=\sqrt{x}-x / 2, x \geq 0$.
(d) $v(x):=\frac{x}{1+|x|}, x \in \mathbb{R}$.
2. Establish the following inequalities.
(a) For $0<t<1$, prove that $x^{t} \leq t x+(1-t)$ for all $x>0$.
(b) Prove that $a^{t} b^{1-t} \leq t a+(1-t) b$ for $a \geq 0, b \geq 0$, and $0<t<1$.
3. Let g be the function given by $g(x):=\ln [(1+x) /(1-x)]$ for $-1<x<1$.
(a) Find the Taylor series of g about 0 .
(b) Find the interval of convergence of the power series in (a).
(c) Use the power series in (a) to evaluate $\ln 2=g(1 / 3)$ accurate to four decimal places.
4. Let f be the function on \mathbb{R} defined by

$$
f(x):= \begin{cases}x^{2} \sin \frac{1}{x} & \text { for } x \in \mathbb{R} \backslash\{0\}, \\ 0 & \text { for } x=0\end{cases}
$$

(a) Find $f^{\prime}(x)$ for for $x \in \mathbb{R} \backslash\{0\}$.
(b) Prove that f is differentiable at 0 and that $f^{\prime}(0)=0$.
(c) Show that f^{\prime} is not continuous at 0 .
5. Let $u(x):=\arctan x$ and $v(x):=1 /\left(1+x^{2}\right)$ for $x \in(-\infty, \infty)$.
(a) Find the Taylor series of v about 0 and its interval of convergence.
(b) Find the Taylor series of u about 0 and its interval of convergence.
(c) Compute $v^{(6)}(0)$ and $v^{(7)}(0)$.
(d) Compute $u^{(6)}(0)$ and $u^{(7)}(0)$.

