MATH 314 Assignment \#9

1. Let f be an increasing function on $[a, b]$ with $-\infty<a<b<\infty$.
(a) Let $P=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ be a partition of $[a, b]$. Prove

$$
U(f, P)-L(f, P) \leq \sum_{i=1}^{n}\left[f\left(t_{i}\right)-f\left(t_{i-1}\right)\right]\left(t_{i}-t_{i-1}\right)
$$

(b) Prove that $U(f, P)-L(f, P) \leq[f(b)-f(a)] \delta$ whenever $\|P\|<\delta$.
(c) Prove that f is integrable on $[a, b]$.
2. Let g be the function on $[0,1]$ defined by $g(0):=0$ and

$$
g(x):=2^{-n} \text { for } 2^{-n-1}<x \leq 2^{-n}, \quad n=0,1,2, \ldots
$$

(a) Prove that g is integrable on $[0,1]$.
(b) Find $\int_{0}^{1} g(x) d x$.
3. Let f be the function on \mathbb{R} defined as follows: $f(x):=0$ for $x<0 ; f(x):=x$ for $0 \leq x \leq 1 ; f(x):=2$ for $x>1$.
(a) Find an explicit expression of the function $F(x):=\int_{0}^{x} f(t) d t, x \in \mathbb{R}$.
(b) Is F continuous on \mathbb{R} ? Justify your answer.
(c) Where is F differentiable? Calculate F^{\prime} at the points of differentiability.
4. (a) Let $G(x):=\int_{-x}^{x^{2}} \sqrt{1+t^{2}} d t, x \in \mathbb{R}$. Find $G^{\prime}(x)$ for $x \in \mathbb{R}$.
(b) Let $H(x):=\int_{0}^{x} x e^{t^{2}} d t$ for $x \in \mathbb{R}$. Find $H^{\prime \prime}(x)$ for $x \in \mathbb{R}$.
5. Let

$$
F(x):=\int_{x}^{x+\pi}|\cos t| d t, \quad x \in \mathbb{R}
$$

(a) Find $F^{\prime}(x)$ for $x \in \mathbb{R}$.
(b) Find an explicit expression for $F(x), x \in \mathbb{R}$.

