MATH 314 Assignment #1

1. Let A, B,C, and X be sets. Prove the following statements:
(a) AU(BNC)=(AuB)N(AUC).
Proof. Suppose x € AU(BNC). Thenx € Aorx € BNC. If x € A, then = belongs
to both AU B and AUC, hence, z € (AUB)N(AUC). If x € BNC, then x € B
and x € C; hence, we also have z € (AU B)N (AU ().
Conversely, suppose x € (AUB)N(AUC). Then x € AUB and x € AUC. If
x € A, thenx € AU(BNC). If z ¢ A, then we must have x € B and = € C. Hence,
reBNCandsoxe AU(BNC).
(b) X\ (ANB)=(X\A4)U(X\B).
Proof. Suppose x € X \ (AN B). Then z € X and x ¢ AN B. It follows that =z ¢ A
orx ¢ B. Hence, z € X\ Aor z € X \ B, that is, z € (X \ A) U (X \ B). Conversely,
suppose x € (X \ A)U (X \ B). Thenz € X\ Aor z € X\ B. It follows that x € X,
x ¢ Aorz ¢ B. Hence, x ¢ AN B, and thereby z € X \ (AN B).

2. Use the principle of mathematical induction to prove the following statements:
(a) 1+3+---+(2n—1)=n?for all n € N.

Proof. Our nth proposition is P, : “1 +3+---+ (2n — 1) = n?”. Thus Py asserts
that 1 = 12. This is obviously true. For the induction step, suppose that P, is true,
i.e., 1+3+---+(2n—1) = n. Since we wish to prove P, from this, we add 2n + 1
to both sides to obtain

14+3+- - +2n—-D+2n+1)=n*+2n+1=(n+1)>%

Thus, P, 41 holds if P, holds. By the principle of mathematical induction, we conclude

that P, is true for all n.
(b) 2" > n? for all n > 5.

Proof. For n = 5, we have 2" = 32 and n? = 25. So 2" > n? for n = 5. For the
induction step, suppose that 2® > n? and n > 5. It follows that 2"t =2.2" > 2n2,

For n > 5 we have
2n* —(n+1)? =20 —(n*+2n+1)=n*-2n—-1=n-12-2>(5-1)*-2>0.
Hence 2" > 2n? > (n + 1)2. This completes the induction procedure.
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3. Let A, B, C be sets, and let f : A — B and g : B — C be functions. Prove the

following statements.
(a) If f and g are injective, then g o f is injective.
Proof. Suppose that f and g are injective. Let z,y € A. If (go f)(z) = (go f)(y),
then g(f(x)) = g(f(y)). Since g is injective, we have f(z) = f(y). Further, since f is
injective, it follows that © = y. Therefore, g o f is injective.
(b) If f and g are surjective, then g o f is surjective.
Proof. Suppose that f and g are surjective. Let ¢ be an arbitrary element of C'. Since
g : B — C' is surjective, there exists some b € B such that g(b) = ¢. Further, since
f + A — B is surjective, there exists some a € A such that f(a) = b. Consequently,
(go f)(a) =g(f(a)) = g(b) = c. This shows that go f is surjective.
(c) If f and g are bijective, then g o f is bijective.
Proof. Suppose that f and g are bijective. Then they are injective and surjective. By
(a) and (b), g o f is both injective and surjective. Therefore g o f is bijective.
(d) If f and g are bijective, then (go f)™t = f~tog L.
Proof. Suppose that f : A — B and g : B — C are bijective. Then both the
functions (go f)~t and f~log ! map C'to A. Let c€ C, b= g (c),and a = f~1(b).
Then ¢(b) = ¢ and f(a) = b. It follows that (g o f)(a) = g(f(a)) = g(b) = c. Hence
(9o f)~1(c) = a. This shows that (go f)~1(c) = (f~tog™1)(c) for all ¢ € C. Therefore
(gof)™t=f"tog "

4. Let a and b be two elements of an ordered commutative ring. Prove the following

statements.
(a) la| —1b] < |a —b].

Proof. By the triangle inequality we have |a| = |[(a — b) + b| < |a — b| + |b|. It follows
that |a| — |b] < |a — b.

(b) [lal = |bl] < |a —0].
Proof . If |a| > |b], then ||a| — [b]| = |a| — [b] < |a — b], by part (a). If |a| < |b], then

lal = [bl] = [b] = la] < |b—a] =]a —b].

(¢) 2max{a,b} = (a+b) +|a —b|.



Proof. If a > b, then max{a,b} = a and |a — b| = a — b. Hence
(a+b) + |a — b = (a+b) + (a — b) = 2a = 2max{a, b}.

If a < b, then max{a,b} =b and |a — b| = —(a — b). Hence
(a+b)+|a—bl = (a+0b) — (a—b) =2b=2max{a,b}.

(d) 2min{a,b} = (a+b) — |a —b|.
Proof. If a > b, then min{a,b} = b and |a — b| = a — b. Hence

(a+0b)—|a—bl=(a+0b)— (a—0b) =2b=2min{a,b}.
If a < b, then min{a,b} = a and |a — b| = —(a — b). Hence
(a+b)—|a—>bl=(a+b)+ (a —b) =2a =2min{a,b}.

. Let a, b, ¢, and d be elements of an ordered field. Prove the following statements.
(a) If bd > 0, then a/b < ¢/d < ad — be < 0.
Proof. If bd > 0, then

a/b < c/d < (bd)(a/b) < (bd)(c/d) < ad < be < ad — be < 0.

(b) If bd > 0 and a/b < ¢/d, then
a a-+tc

b b+d
Proof. Suppose that bd > 0 and a/b < ¢/d. By (a) we have ad — bc < 0. It follows
that

a(b+d) —bla+c) =ab+ ad — ba — bc = ad — be < 0.

Note that b(b + d) = b®> + bd > 0, since bd > 0. Applying (a) again, we obtain
a/b<(a+c)/(b+d).



