MATH 314 Assignment \#1

1. Let A, B, C, and X be sets. Prove the following statements:
(a) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.

Proof. Suppose $x \in A \cup(B \cap C)$. Then $x \in A$ or $x \in B \cap C$. If $x \in A$, then x belongs to both $A \cup B$ and $A \cup C$; hence, $x \in(A \cup B) \cap(A \cup C)$. If $x \in B \cap C$, then $x \in B$ and $x \in C$; hence, we also have $x \in(A \cup B) \cap(A \cup C)$.
Conversely, suppose $x \in(A \cup B) \cap(A \cup C)$. Then $x \in A \cup B$ and $x \in A \cup C$. If $x \in A$, then $x \in A \cup(B \cap C)$. If $x \notin A$, then we must have $x \in B$ and $x \in C$. Hence, $x \in B \cap C$ and so $x \in A \cup(B \cap C)$.
(b) $X \backslash(A \cap B)=(X \backslash A) \cup(X \backslash B)$.

Proof. Suppose $x \in X \backslash(A \cap B)$. Then $x \in X$ and $x \notin A \cap B$. It follows that $x \notin A$ or $x \notin B$. Hence, $x \in X \backslash A$ or $x \in X \backslash B$, that is, $x \in(X \backslash A) \cup(X \backslash B)$. Conversely, suppose $x \in(X \backslash A) \cup(X \backslash B)$. Then $x \in X \backslash A$ or $x \in X \backslash B$. It follows that $x \in X$, $x \notin A$ or $x \notin B$. Hence, $x \notin A \cap B$, and thereby $x \in X \backslash(A \cap B)$.
2. Use the principle of mathematical induction to prove the following statements:
(a) $1+3+\cdots+(2 n-1)=n^{2}$ for all $n \in \mathbf{N}$.

Proof. Our nth proposition is P_{n} : " $1+3+\cdots+(2 n-1)=n^{2}$ ". Thus P_{1} asserts that $1=1^{2}$. This is obviously true. For the induction step, suppose that P_{n} is true, i.e., $1+3+\cdots+(2 n-1)=n^{2}$. Since we wish to prove P_{n+1} from this, we add $2 n+1$ to both sides to obtain

$$
1+3+\cdots+(2 n-1)+(2 n+1)=n^{2}+2 n+1=(n+1)^{2} .
$$

Thus, P_{n+1} holds if P_{n} holds. By the principle of mathematical induction, we conclude that P_{n} is true for all n.
(b) $2^{n}>n^{2}$ for all $n \geq 5$.

Proof. For $n=5$, we have $2^{n}=32$ and $n^{2}=25$. So $2^{n}>n^{2}$ for $n=5$. For the induction step, suppose that $2^{n}>n^{2}$ and $n \geq 5$. It follows that $2^{n+1}=2 \cdot 2^{n}>2 n^{2}$. For $n \geq 5$ we have
$2 n^{2}-(n+1)^{2}=2 n^{2}-\left(n^{2}+2 n+1\right)=n^{2}-2 n-1=(n-1)^{2}-2 \geq(5-1)^{2}-2>0$.

Hence $2^{n+1}>2 n^{2}>(n+1)^{2}$. This completes the induction procedure.
3. Let A, B, C be sets, and let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Prove the following statements.
(a) If f and g are injective, then $g \circ f$ is injective.

Proof. Suppose that f and g are injective. Let $x, y \in A$. If $(g \circ f)(x)=(g \circ f)(y)$, then $g(f(x))=g(f(y))$. Since g is injective, we have $f(x)=f(y)$. Further, since f is injective, it follows that $x=y$. Therefore, $g \circ f$ is injective.
(b) If f and g are surjective, then $g \circ f$ is surjective.

Proof. Suppose that f and g are surjective. Let c be an arbitrary element of C. Since $g: B \rightarrow C$ is surjective, there exists some $b \in B$ such that $g(b)=c$. Further, since $f: A \rightarrow B$ is surjective, there exists some $a \in A$ such that $f(a)=b$. Consequently, $(g \circ f)(a)=g(f(a))=g(b)=c$. This shows that $g \circ f$ is surjective.
(c) If f and g are bijective, then $g \circ f$ is bijective.

Proof. Suppose that f and g are bijective. Then they are injective and surjective. By (a) and (b), $g \circ f$ is both injective and surjective. Therefore $g \circ f$ is bijective.
(d) If f and g are bijective, then $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.

Proof. Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijective. Then both the functions $(g \circ f)^{-1}$ and $f^{-1} \circ g^{-1} \operatorname{map} C$ to A. Let $c \in C, b=g^{-1}(c)$, and $a=f^{-1}(b)$. Then $g(b)=c$ and $f(a)=b$. It follows that $(g \circ f)(a)=g(f(a))=g(b)=c$. Hence $(g \circ f)^{-1}(c)=a$. This shows that $(g \circ f)^{-1}(c)=\left(f^{-1} \circ g^{-1}\right)(c)$ for all $c \in C$. Therefore $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.
4. Let a and b be two elements of an ordered commutative ring. Prove the following statements.
(a) $|a|-|b| \leq|a-b|$.

Proof. By the triangle inequality we have $|a|=|(a-b)+b| \leq|a-b|+|b|$. It follows that $|a|-|b| \leq|a-b|$.
(b) $||a|-|b|| \leq|a-b|$.

Proof. If $|a| \geq|b|$, then $||a|-|b||=|a|-|b| \leq|a-b|$, by part (a). If $|a|<|b|$, then

$$
||a|-|b||=|b|-|a| \leq|b-a|=|a-b| .
$$

(c) $2 \max \{a, b\}=(a+b)+|a-b|$.

Proof. If $a \geq b$, then $\max \{a, b\}=a$ and $|a-b|=a-b$. Hence

$$
(a+b)+|a-b|=(a+b)+(a-b)=2 a=2 \max \{a, b\} .
$$

If $a<b$, then $\max \{a, b\}=b$ and $|a-b|=-(a-b)$. Hence

$$
(a+b)+|a-b|=(a+b)-(a-b)=2 b=2 \max \{a, b\} .
$$

(d) $2 \min \{a, b\}=(a+b)-|a-b|$.

Proof. If $a \geq b$, then $\min \{a, b\}=b$ and $|a-b|=a-b$. Hence

$$
(a+b)-|a-b|=(a+b)-(a-b)=2 b=2 \min \{a, b\} .
$$

If $a<b$, then $\min \{a, b\}=a$ and $|a-b|=-(a-b)$. Hence

$$
(a+b)-|a-b|=(a+b)+(a-b)=2 a=2 \min \{a, b\} .
$$

5. Let a, b, c, and d be elements of an ordered field. Prove the following statements.
(a) If $b d>0$, then $a / b<c / d \Leftrightarrow a d-b c<0$.

Proof. If $b d>0$, then

$$
a / b<c / d \Leftrightarrow(b d)(a / b)<(b d)(c / d) \Leftrightarrow a d<b c \Leftrightarrow a d-b c<0 .
$$

(b) If $b d>0$ and $a / b<c / d$, then

$$
\frac{a}{b}<\frac{a+c}{b+d} .
$$

Proof. Suppose that $b d>0$ and $a / b<c / d$. By (a) we have $a d-b c<0$. It follows that

$$
a(b+d)-b(a+c)=a b+a d-b a-b c=a d-b c<0 .
$$

Note that $b(b+d)=b^{2}+b d>0$, since $b d>0$. Applying (a) again, we obtain $a / b<(a+c) /(b+d)$.

