
MATH 314 Assignment #1

1. Let A,B,C, and X be sets. Prove the following statements:

(a) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Proof . Suppose x ∈ A∪ (B ∩C). Then x ∈ A or x ∈ B ∩C. If x ∈ A, then x belongs

to both A ∪ B and A ∪ C; hence, x ∈ (A ∪ B) ∩ (A ∪ C). If x ∈ B ∩ C, then x ∈ B

and x ∈ C; hence, we also have x ∈ (A ∪B) ∩ (A ∪ C).

Conversely, suppose x ∈ (A ∪ B) ∩ (A ∪ C). Then x ∈ A ∪ B and x ∈ A ∪ C. If

x ∈ A, then x ∈ A ∪ (B ∩ C). If x /∈ A, then we must have x ∈ B and x ∈ C. Hence,

x ∈ B ∩ C and so x ∈ A ∪ (B ∩ C).

(b) X \ (A ∩B) = (X \A) ∪ (X \B).

Proof . Suppose x ∈ X \ (A ∩ B). Then x ∈ X and x /∈ A ∩ B. It follows that x /∈ A

or x /∈ B. Hence, x ∈ X \A or x ∈ X \B, that is, x ∈ (X \A)∪ (X \B). Conversely,

suppose x ∈ (X \A)∪ (X \B). Then x ∈ X \A or x ∈ X \B. It follows that x ∈ X,

x /∈ A or x /∈ B. Hence, x /∈ A ∩B, and thereby x ∈ X \ (A ∩B).

2. Use the principle of mathematical induction to prove the following statements:

(a) 1 + 3 + · · ·+ (2n− 1) = n2 for all n ∈ N.

Proof . Our nth proposition is Pn : “1 + 3 + · · · + (2n − 1) = n2”. Thus P1 asserts

that 1 = 12. This is obviously true. For the induction step, suppose that Pn is true,

i.e., 1+3+ · · ·+(2n− 1) = n2. Since we wish to prove Pn+1 from this, we add 2n+1

to both sides to obtain

1 + 3 + · · ·+ (2n− 1) + (2n+ 1) = n2 + 2n+ 1 = (n+ 1)2.

Thus, Pn+1 holds if Pn holds. By the principle of mathematical induction, we conclude

that Pn is true for all n.

(b) 2n > n2 for all n ≥ 5.

Proof . For n = 5, we have 2n = 32 and n2 = 25. So 2n > n2 for n = 5. For the

induction step, suppose that 2n > n2 and n ≥ 5. It follows that 2n+1 = 2 · 2n > 2n2.

For n ≥ 5 we have

2n2 − (n+1)2 = 2n2 − (n2 +2n+1) = n2 − 2n− 1 = (n− 1)2 − 2 ≥ (5− 1)2 − 2 > 0.

Hence 2n+1 > 2n2 > (n+ 1)2. This completes the induction procedure.
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3. Let A, B, C be sets, and let f : A → B and g : B → C be functions. Prove the

following statements.

(a) If f and g are injective, then g ◦ f is injective.

Proof . Suppose that f and g are injective. Let x, y ∈ A. If (g ◦ f)(x) = (g ◦ f)(y),
then g(f(x)) = g(f(y)). Since g is injective, we have f(x) = f(y). Further, since f is

injective, it follows that x = y. Therefore, g ◦ f is injective.

(b) If f and g are surjective, then g ◦ f is surjective.

Proof . Suppose that f and g are surjective. Let c be an arbitrary element of C. Since

g : B → C is surjective, there exists some b ∈ B such that g(b) = c. Further, since

f : A → B is surjective, there exists some a ∈ A such that f(a) = b. Consequently,

(g ◦ f)(a) = g(f(a)) = g(b) = c. This shows that g ◦ f is surjective.

(c) If f and g are bijective, then g ◦ f is bijective.

Proof . Suppose that f and g are bijective. Then they are injective and surjective. By

(a) and (b), g ◦ f is both injective and surjective. Therefore g ◦ f is bijective.

(d) If f and g are bijective, then (g ◦ f)−1 = f−1 ◦ g−1.

Proof . Suppose that f : A → B and g : B → C are bijective. Then both the

functions (g ◦f)−1 and f−1 ◦g−1 map C to A. Let c ∈ C, b = g−1(c), and a = f−1(b).

Then g(b) = c and f(a) = b. It follows that (g ◦ f)(a) = g(f(a)) = g(b) = c. Hence

(g◦f)−1(c) = a. This shows that (g◦f)−1(c) = (f−1 ◦g−1)(c) for all c ∈ C. Therefore

(g ◦ f)−1 = f−1 ◦ g−1.

4. Let a and b be two elements of an ordered commutative ring. Prove the following

statements.

(a) |a| − |b| ≤ |a− b|.

Proof . By the triangle inequality we have |a| = |(a− b) + b| ≤ |a− b|+ |b|. It follows
that |a| − |b| ≤ |a− b|.

(b)
∣∣|a| − |b|

∣∣ ≤ |a− b|.

Proof . If |a| ≥ |b|, then
∣∣|a| − |b|

∣∣ = |a| − |b| ≤ |a− b|, by part (a). If |a| < |b|, then

∣∣|a| − |b|
∣∣ = |b| − |a| ≤ |b− a| = |a− b|.

(c) 2max{a, b} = (a+ b) + |a− b|.
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Proof . If a ≥ b, then max{a, b} = a and |a− b| = a− b. Hence

(a+ b) + |a− b| = (a+ b) + (a− b) = 2a = 2max{a, b}.

If a < b, then max{a, b} = b and |a− b| = −(a− b). Hence

(a+ b) + |a− b| = (a+ b)− (a− b) = 2b = 2max{a, b}.

(d) 2min{a, b} = (a+ b)− |a− b|.

Proof . If a ≥ b, then min{a, b} = b and |a− b| = a− b. Hence

(a+ b)− |a− b| = (a+ b)− (a− b) = 2b = 2min{a, b}.

If a < b, then min{a, b} = a and |a− b| = −(a− b). Hence

(a+ b)− |a− b| = (a+ b) + (a− b) = 2a = 2min{a, b}.

5. Let a, b, c, and d be elements of an ordered field. Prove the following statements.

(a) If bd > 0, then a/b < c/d ⇔ ad− bc < 0.

Proof . If bd > 0, then

a/b < c/d ⇔ (bd)(a/b) < (bd)(c/d) ⇔ ad < bc ⇔ ad− bc < 0.

(b) If bd > 0 and a/b < c/d, then
a

b
<

a+ c

b+ d
.

Proof . Suppose that bd > 0 and a/b < c/d. By (a) we have ad − bc < 0. It follows

that

a(b+ d)− b(a+ c) = ab+ ad− ba− bc = ad− bc < 0.

Note that b(b + d) = b2 + bd > 0, since bd > 0. Applying (a) again, we obtain

a/b < (a+ c)/(b+ d).
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