## MATH 314 Assignment \#2

1. (a) Prove that there is no rational number $r$ such that $r^{2}=3$.

Proof. Consider the set $S$ of all positive integers $n$ such that $(m / n)^{2}=3$ for some $m \in \mathbb{Z}$. If the set $S$ is not empty, then we let $n_{0}$ be its least element. For this $n_{0}$, there exists some $m_{0} \in \mathbb{Z}$ such that $\left(m_{0} / n_{0}\right)^{2}=3$, i.e., $m_{0}^{2}=3 n_{0}^{2}$. Hence 3 divides $m_{0}^{2}$. It follows that 3 divides $m_{0}$. So $m_{0}=3 m_{1}$ for some $m_{1} \in \mathbb{Z}$. Consequently, $\left(3 m_{1}\right)^{2}=3 n_{0}^{2}$, and so $3 m_{1}^{2}=n_{0}^{2}$. Hence 3 divides $n_{0}$, and so $n_{0}=3 n_{1}$ for some $n_{1} \in \mathbb{N}$. Now we have $m_{1}^{2}=3 n_{1}^{2}$. Thus $n_{1} \in S$ and $n_{1}<n_{0}$. This contradicts the fact that $n_{0}$ is the least element of $S$. Therefore, there is no rational number $r$ such that $r^{2}=3$.
(b) Prove that $a+b \sqrt{2}$ is an irrational number for all rational numbers $a$ and $b$ with $b \neq 0$.
Proof. Let $c:=a+b \sqrt{2}$. Since $b \neq 0$, it follows that $\sqrt{2}=(c-a) / b$. If $c$ is a rational number, then $(c-b) / a$ is a rational number because $a$ and $b$ are rational numbers. But $\sqrt{2}$ is an irrational number. Thus $c$ must be an irrational number.
2. Let $x$ and $y$ be real numbers. Prove the following statements.
(a) If $x>0$, then there exists a unique natural number $n$ such that $n-1<x \leq n$.

Proof. Let $S$ be the set $\{k \in \mathbb{N}: k \geq x\}$. By the well ordering principle, $S$ has a least element, say $n$. Since $n \in S$, we have $n \geq x$. If $n=1$, then $n-1=0<x$. If $n>1$, then $n-1 \in \mathbb{N}$. But $n$ is the least element of $S$, so $n-1 \notin S$. Hence $n-1<x$. If $n_{1}$ is a natural number satisfying $n_{1}-1<x \leq n_{1}$. Then $n_{1} \geq x>n-1$ and $n \geq x>n_{1}-1$. So $n_{1} \geq n$ and $n \geq n_{1}$. Thus $n_{1}=n$. This proves the uniqueness.
(b) If $0<y<1$, then there exists a unique integer $n \geq 2$ such that

$$
\frac{1}{n} \leq y<\frac{1}{n-1}
$$

Proof. Let $T$ be the set $\{k \in \mathbb{N}: k y \geq 1\}$. In light of the Archimedean property, $T$ is not empty. By the well ordering principle, $T$ has a least element, say $n$. Since $n \in T$, we have $n y \geq 1$. It follows that $n \geq 1 / y$. But $0<y<1$, so $1 / y>1$. Hence $n>1$. This shows that $n \geq 2$ and $1 / n \leq y$. Moreover, since $n$ is the least element of $T$, we have $n-1 \notin T$. It follows that $(n-1) y<1$. Therefore, $1 / n \leq y<1 /(n-1)$. If $n_{1} \geq 2$ satisfies $1 / n_{1} \leq y<1 /\left(n_{1}-1\right)$, then $1 / n_{1}<1 /(n-1)$ and $1 / n<1 /\left(n_{1}-1\right)$. Therefore, we get $n_{1}=n$ and complete the proof of the uniqueness.
3. Write the following sets in interval notation:
(a) $\{x \in \mathbb{R}:|x-2|<3\}$
(b) $\{x \in \mathbb{R}:|2 x+1| \leq 1\}$

Solution. We see that $|x-2|<3$ if and only if $-3<x-2<3$, i.e., $2-3<x<2+3$. Hence, $\{x \in \mathbb{R}:|x-2|<3\}=(-1,5)$. For (b), $|2 x+1| \geq 5$ if and only if $2 x+1 \leq-5$ or $2 x+1 \geq 5$. We have $2 x+1 \leq-5 \Leftrightarrow x \leq-3$. Moreover, $2 x+1 \geq 5 \Leftrightarrow x \geq 2$. It follows that $\{x \in \mathbb{R}:|2 x+1| \geq 5\}=(-\infty,-3] \cup[2, \infty)$.
(c) $\left\{x \in \mathbb{R}: x^{2}<8\right\}$
(d) $\left\{x \in \mathbb{R}: x^{3} \leq 8\right\}$

Solution. We have $\left\{x \in \mathbb{R}: x^{2}<8\right\}=(-2 \sqrt{2}, 2 \sqrt{2})$ and $\left\{x \in \mathbb{R}: x^{3} \leq 8\right\}=(-\infty, 2)$.
3. For each set below, find its maximum, supremum, minimum, and infimum if they exist.
(a) $(0,3]$
(b) $\{1-1 / n: n \in \mathbb{N}\}$

Solution. Let $A:=(0,3]$ and $B:=\{1-1 / n: n \in \mathbb{N}\}$. We have $\max A=3$, $\sup A=3$, $\min A$ does not exists, and $\inf A=0$. Moreover, $\max B$ does not exist, $\sup B=1$, $\min B=0$, and $\inf B=0$.
(c) $\mathbb{R} \backslash[1, \infty)$
(d) $\left\{n-(-1)^{n}: n \in \mathbb{N}\right\}$

Solution. Let $C:=\mathbb{R} \backslash[1, \infty)=(-\infty, 1)$ and $D:=\left\{n-(-1)^{n}: n \in \mathbb{N}\right\}$. Then max $C$ does not exist, $\sup C=1, \min C$ does not exist, and $\inf C=-\infty$. Moreover, $\max D$ does not exist, $\sup D=\infty, \min D=1$, and $\inf D=1$.
5. Let $A$ be a nonempty bounded subset of $\mathbb{R}$, and let $s:=\sup A$.
(a) Show that $s \in A$ if and only if $s=\max A$.

Proof. If $s=\sup A \in A$, then $s \geq a$ for all $a \in A$. Hence $s=\max A$. Conversely, if $s=\max A$, then $s \in A$.
(b) Let $-A:=\{-x: x \in A\}$. Prove that $\inf (-A)=-\sup A$.

Proof. Let $s:=\sup A$. Then $a \leq s$ for all $a \in A$. It follows that $-s \leq-a$ for all $a \in A$. Hence, $-s$ is a lower bound of $-A$. Let $t$ be a lower bound of $-A$. Then $t \leq-a$ for all $a \in A$. It follows that $a \leq-t$ for all $a \in A$. Hence, $-t$ is an upper bound of $A$. Consequently, $-t \geq s$. So $t \leq-s$ whenever $t$ is a lower bound of $-A$. This shows $-s=\inf (-A)$.

