MATH 314 Assignment #2

1. (a) Prove that there is no rational number r such that $r^2 = 3$.

Proof. Consider the set S of all positive integers n such that $(m/n)^2 = 3$ for some $m \in \mathbb{Z}$. If the set S is not empty, then we let n_0 be its least element. For this n_0 , there exists some $m_0 \in \mathbb{Z}$ such that $(m_0/n_0)^2 = 3$, *i.e.*, $m_0^2 = 3n_0^2$. Hence 3 divides m_0^2 . It follows that 3 divides m_0 . So $m_0 = 3m_1$ for some $m_1 \in \mathbb{Z}$. Consequently, $(3m_1)^2 = 3n_0^2$, and so $3m_1^2 = n_0^2$. Hence 3 divides n_0 , and so $n_0 = 3n_1$ for some $n_1 \in \mathbb{N}$. Now we have $m_1^2 = 3n_1^2$. Thus $n_1 \in S$ and $n_1 < n_0$. This contradicts the fact that n_0 is the least element of S. Therefore, there is no rational number r such that $r^2 = 3$.

(b) Prove that $a + b\sqrt{2}$ is an irrational number for all rational numbers a and b with $b \neq 0$.

Proof. Let $c := a + b\sqrt{2}$. Since $b \neq 0$, it follows that $\sqrt{2} = (c - a)/b$. If c is a rational number, then (c - b)/a is a rational number because a and b are rational numbers. But $\sqrt{2}$ is an irrational number. Thus c must be an irrational number.

2. Let x and y be real numbers. Prove the following statements.

(a) If x > 0, then there exists a unique natural number n such that $n - 1 < x \le n$.

Proof. Let S be the set $\{k \in \mathbb{N} : k \ge x\}$. By the well ordering principle, S has a least element, say n. Since $n \in S$, we have $n \ge x$. If n = 1, then n - 1 = 0 < x. If n > 1, then $n - 1 \in \mathbb{N}$. But n is the least element of S, so $n - 1 \notin S$. Hence n - 1 < x. If n_1 is a natural number satisfying $n_1 - 1 < x \le n_1$. Then $n_1 \ge x > n - 1$ and $n \ge x > n_1 - 1$. So $n_1 \ge n$ and $n \ge n_1$. Thus $n_1 = n$. This proves the uniqueness. (b) If 0 < y < 1, then there exists a unique integer $n \ge 2$ such that

$$\frac{1}{n} \le y < \frac{1}{n-1}$$

Proof. Let T be the set $\{k \in \mathbb{N} : ky \ge 1\}$. In light of the Archimedean property, T is not empty. By the well ordering principle, T has a least element, say n. Since $n \in T$, we have $ny \ge 1$. It follows that $n \ge 1/y$. But 0 < y < 1, so 1/y > 1. Hence n > 1. This shows that $n \ge 2$ and $1/n \le y$. Moreover, since n is the least element of T, we have $n - 1 \notin T$. It follows that (n - 1)y < 1. Therefore, $1/n \le y < 1/(n - 1)$. If $n_1 \ge 2$ satisfies $1/n_1 \le y < 1/(n_1 - 1)$, then $1/n_1 < 1/(n - 1)$ and $1/n < 1/(n_1 - 1)$. Therefore, we get $n_1 = n$ and complete the proof of the uniqueness.

- 3. Write the following sets in interval notation:
 - (a) $\{x \in \mathbb{R} : |x 2| < 3\}$ (b) $\{x \in \mathbb{R} : |2x + 1| \le 1\}$

Solution. We see that |x-2| < 3 if and only if -3 < x-2 < 3, *i.e.*, 2-3 < x < 2+3. Hence, $\{x \in \mathbb{R} : |x-2| < 3\} = (-1,5)$. For (b), $|2x+1| \ge 5$ if and only if $2x+1 \le -5$ or $2x+1 \ge 5$. We have $2x+1 \le -5 \Leftrightarrow x \le -3$. Moreover, $2x+1 \ge 5 \Leftrightarrow x \ge 2$. It follows that $\{x \in \mathbb{R} : |2x+1| \ge 5\} = (-\infty, -3] \cup [2, \infty)$.

(c) $\{x \in \mathbb{R} : x^2 < 8\}$ (d) $\{x \in \mathbb{R} : x^3 \le 8\}$

Solution. We have $\{x \in \mathbb{R} : x^2 < 8\} = (-2\sqrt{2}, 2\sqrt{2})$ and $\{x \in \mathbb{R} : x^3 \le 8\} = (-\infty, 2)$.

- 3. For each set below, find its maximum, supremum, minimum, and infimum if they exist.
 - (a) (0,3] (b) $\{1-1/n : n \in \mathbb{N}\}$

Solution. Let A := (0,3] and $B := \{1-1/n : n \in \mathbb{N}\}$. We have max A = 3, sup A = 3, min A does not exists, and inf A = 0. Moreover, max B does not exist, sup B = 1, min B = 0, and inf B = 0.

(c) $\mathbb{R} \setminus [1, \infty)$ (d) $\{n - (-1)^n : n \in \mathbb{N}\}$

Solution. Let $C := \mathbb{R} \setminus [1, \infty) = (-\infty, 1)$ and $D := \{n - (-1)^n : n \in \mathbb{N}\}$. Then max C does not exist, $\sup C = 1$, $\min C$ does not exist, and $\inf C = -\infty$. Moreover, $\max D$ does not exist, $\sup D = \infty$, $\min D = 1$, and $\inf D = 1$.

- 5. Let A be a nonempty bounded subset of \mathbb{R} , and let $s := \sup A$.
 - (a) Show that $s \in A$ if and only if $s = \max A$.

Proof. If $s = \sup A \in A$, then $s \ge a$ for all $a \in A$. Hence $s = \max A$. Conversely, if $s = \max A$, then $s \in A$.

(b) Let $-A := \{-x : x \in A\}$. Prove that $\inf(-A) = -\sup A$.

Proof. Let $s := \sup A$. Then $a \leq s$ for all $a \in A$. It follows that $-s \leq -a$ for all $a \in A$. Hence, -s is a lower bound of -A. Let t be a lower bound of -A. Then $t \leq -a$ for all $a \in A$. It follows that $a \leq -t$ for all $a \in A$. Hence, -t is an upper bound of A. Consequently, $-t \geq s$. So $t \leq -s$ whenever t is a lower bound of -A. This shows $-s = \inf(-A)$.