1.

MATH 314 Assignment #2

(a) Prove that there is no rational number 7 such that r? = 3.

Proof. Consider the set S of all positive integers n such that (m/n)? = 3 for some
m € Z. If the set S is not empty, then we let ng be its least element. For this ny,
there exists some mg € Z such that (mg/ng)? = 3, i.e., m3 = 3n. Hence 3 divides

m%. It follows that 3 divides mg. So mg = 3my for some m; € Z. Consequently,

(3m1)? = 3ng, and so 3m} = nZ. Hence 3 divides ng, and so ng = 3n; for some
ni1 € IN. Now we have m% = Sn% Thus n; € S and ny < ng. This contradicts the
fact that ng is the least element of S. Therefore, there is no rational number r such

that r2 = 3.

(b) Prove that a + by/2 is an irrational number for all rational numbers @ and b with
b#0.
Proof. Let ¢ := a+by/2. Since b # 0, it follows that v/2 = (¢ —a)/b. If ¢ is a rational

number, then (¢ — b)/a is a rational number because a and b are rational numbers.

But /2 is an irrational number. Thus ¢ must be an irrational number.

Let x and y be real numbers. Prove the following statements.

(a) If z > 0, then there exists a unique natural number n such that n — 1 < z < n.

Proof. Let S be the set {k € IN : k > x}. By the well ordering principle, S has a least
element, say n. Since n € S, we haven > x. f n=1,thenn—-1=0<z. If n > 1,
then n — 1 € IN. But n is the least element of S, son —1¢ S. Hence n — 1 < .
If ny is a natural number satisfying ny — 1 < x < n;. Thenn; > x > n —1 and
n>x>ny—1. Sony >nand n > ny. Thus ny = n. This proves the uniqueness.

(b) If 0 < y < 1, then there exists a unique integer n > 2 such that

1
n—1

1
—<y<
n

Proof. Let T be the set {k € IN : ky > 1}. In light of the Archimedean property, T is
not empty. By the well ordering principle, T" has a least element, say n. Since n € T,
we have ny > 1. It follows that n > 1/y. But 0 <y < 1,s0 1/y > 1. Hence n > 1.
This shows that n > 2 and 1/n < y. Moreover, since n is the least element of T', we
have n — 1 ¢ T. It follows that (n — 1)y < 1. Therefore, 1/n <y < 1/(n —1). If
ny > 2 satisfies 1/n; <y <1/(n; —1), then 1/n; <1/(n—1) and 1/n < 1/(ny —1).

Therefore, we get n; = n and complete the proof of the uniqueness.



3. Write the following sets in interval notation:
(a) {zeR: |z —2| <3} (b) {reR:|2x+ 1| <1}
Solution. We see that [t —2| < 3ifand only if -3 <2—-2<3,4.e€,2-3 <z <2+3.
Hence, {z € R : |z —2| < 3} = (—1,5). For (b), |2z+1| > 5ifand only if 22 +1 < —5
or2x+1>5 Wehave 2z +1 < -5 < = < —3. Moreover, 2z +1>5< x> 2. It
follows that {xr € IR : |22 4+ 1| > 5} = (—o0, —3] U [2, 0).
(c) {reR:2% <8} (d) {reR:2% <8}
Solution. We have {z € R : 22 < 8} = (—2v/2,2v2) and {z € R : 2 < 8} = (—00, 2).
3. For each set below, find its maximum, supremum, minimum, and infimum if they
exist.
(a) (0, 3] () {1 —-1/n:nec N}
Solution. Let A := (0,3] and B :={1—1/n:n € IN}. We have max A = 3, sup A = 3,
min A does not exists, and inf A = 0. Moreover, max B does not exist, sup B = 1,
min B = 0, and inf B = 0.

(c) IR\ [1,00) (d) {n = (=1)":n € IN}
Solution. Let C := R\ [1,00) = (—o00,1) and D := {n—(—1)" : n € IN}. Then maxC
does not exist, supC' = 1, min C' does not exist, and inf C' = —oco. Moreover, max D

does not exist, sup D = oo, min D = 1, and inf D = 1.

5. Let A be a nonempty bounded subset of IR, and let s := sup A.
(a) Show that s € A if and only if s = max A.

Proof. If s =sup A € A, then s > a for all a € A. Hence s = max A. Conversely, if
s =max A, then s € A.

(b) Let —A :={—z:x € A}. Prove that inf(—A) = —sup A.

Proof. Let s := sup A. Then a < s for all a € A. It follows that —s < —a for all
a € A. Hence, —s is a lower bound of —A. Let t be a lower bound of —A. Then
t < —a for all a € A. It follows that a < —t for all @ € A. Hence, —t is an upper

bound of A. Consequently, —t > s. So t < —s whenever t is a lower bound of —A.
This shows —s = inf(—A).



