
MATH 314 Assignment #2

1. (a) Prove that there is no rational number r such that r2 = 3.

Proof . Consider the set S of all positive integers n such that (m/n)2 = 3 for some

m ∈ ZZ. If the set S is not empty, then we let n0 be its least element. For this n0,

there exists some m0 ∈ ZZ such that (m0/n0)
2 = 3, i.e., m2

0 = 3n2
0. Hence 3 divides

m2
0. It follows that 3 divides m0. So m0 = 3m1 for some m1 ∈ ZZ. Consequently,

(3m1)
2 = 3n2

0, and so 3m2
1 = n2

0. Hence 3 divides n0, and so n0 = 3n1 for some

n1 ∈ IN. Now we have m2
1 = 3n2

1. Thus n1 ∈ S and n1 < n0. This contradicts the

fact that n0 is the least element of S. Therefore, there is no rational number r such

that r2 = 3.

(b) Prove that a+ b
√
2 is an irrational number for all rational numbers a and b with

b ̸= 0.

Proof . Let c := a+ b
√
2. Since b ̸= 0, it follows that

√
2 = (c− a)/b. If c is a rational

number, then (c − b)/a is a rational number because a and b are rational numbers.

But
√
2 is an irrational number. Thus c must be an irrational number.

2. Let x and y be real numbers. Prove the following statements.

(a) If x > 0, then there exists a unique natural number n such that n− 1 < x ≤ n.

Proof . Let S be the set {k ∈ IN : k ≥ x}. By the well ordering principle, S has a least

element, say n. Since n ∈ S, we have n ≥ x. If n = 1, then n− 1 = 0 < x. If n > 1,

then n − 1 ∈ IN. But n is the least element of S, so n − 1 /∈ S. Hence n − 1 < x.

If n1 is a natural number satisfying n1 − 1 < x ≤ n1. Then n1 ≥ x > n − 1 and

n ≥ x > n1 − 1. So n1 ≥ n and n ≥ n1. Thus n1 = n. This proves the uniqueness.

(b) If 0 < y < 1, then there exists a unique integer n ≥ 2 such that

1

n
≤ y <

1

n− 1
.

Proof . Let T be the set {k ∈ IN : ky ≥ 1}. In light of the Archimedean property, T is

not empty. By the well ordering principle, T has a least element, say n. Since n ∈ T ,

we have ny ≥ 1. It follows that n ≥ 1/y. But 0 < y < 1, so 1/y > 1. Hence n > 1.

This shows that n ≥ 2 and 1/n ≤ y. Moreover, since n is the least element of T , we

have n − 1 /∈ T . It follows that (n − 1)y < 1. Therefore, 1/n ≤ y < 1/(n − 1). If

n1 ≥ 2 satisfies 1/n1 ≤ y < 1/(n1 − 1), then 1/n1 < 1/(n− 1) and 1/n < 1/(n1 − 1).

Therefore, we get n1 = n and complete the proof of the uniqueness.
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3. Write the following sets in interval notation:

(a) {x ∈ IR : |x− 2| < 3} (b) {x ∈ IR : |2x+ 1| ≤ 1}

Solution. We see that |x−2| < 3 if and only if −3 < x−2 < 3, i.e., 2−3 < x < 2+3.

Hence, {x ∈ IR : |x−2| < 3} = (−1, 5). For (b), |2x+1| ≥ 5 if and only if 2x+1 ≤ −5

or 2x + 1 ≥ 5. We have 2x + 1 ≤ −5 ⇔ x ≤ −3. Moreover, 2x + 1 ≥ 5 ⇔ x ≥ 2. It

follows that {x ∈ IR : |2x+ 1| ≥ 5} = (−∞,−3] ∪ [2,∞).

(c) {x ∈ IR : x2 < 8} (d) {x ∈ IR : x3 ≤ 8}

Solution. We have {x ∈ IR : x2 < 8} = (−2
√
2, 2

√
2) and {x ∈ IR : x3 ≤ 8} = (−∞, 2).

3. For each set below, find its maximum, supremum, minimum, and infimum if they

exist.

(a) (0, 3] (b) {1− 1/n : n ∈ IN}

Solution. Let A := (0, 3] and B := {1−1/n : n ∈ IN}. We have maxA = 3, supA = 3,

minA does not exists, and inf A = 0. Moreover, maxB does not exist, supB = 1,

minB = 0, and inf B = 0.

(c) IR \ [1,∞) (d) {n− (−1)n : n ∈ IN}

Solution. Let C := IR\ [1,∞) = (−∞, 1) and D := {n− (−1)n : n ∈ IN}. Then maxC

does not exist, supC = 1, minC does not exist, and inf C = −∞. Moreover, maxD

does not exist, supD = ∞, minD = 1, and infD = 1.

5. Let A be a nonempty bounded subset of IR, and let s := supA.

(a) Show that s ∈ A if and only if s = maxA.

Proof . If s = supA ∈ A, then s ≥ a for all a ∈ A. Hence s = maxA. Conversely, if

s = maxA, then s ∈ A.

(b) Let −A := {−x : x ∈ A}. Prove that inf(−A) = − supA.

Proof . Let s := supA. Then a ≤ s for all a ∈ A. It follows that −s ≤ −a for all

a ∈ A. Hence, −s is a lower bound of −A. Let t be a lower bound of −A. Then

t ≤ −a for all a ∈ A. It follows that a ≤ −t for all a ∈ A. Hence, −t is an upper

bound of A. Consequently, −t ≥ s. So t ≤ −s whenever t is a lower bound of −A.

This shows −s = inf(−A).
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