MATH 314 Assignment #3

1. (a) Prove that $\lim_{n\to\infty} \sqrt{n} = \infty$ and $\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$.

Proof. For M > 0, let $N = \lfloor M^2 \rfloor + 1$. Then n > N implies $\sqrt{n} > \sqrt{M^2} = M$. Hence, $\lim_{n \to \infty} \sqrt{n} = \infty$. By Theorem 1.3, it follows that $\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$.

(b) Prove that if $\lim_{n\to\infty} a_n = a$, then $\lim_{n\to\infty} |a_n| = |a|$. Is the converse true? Justify your answer.

Proof. If $\lim_{n\to\infty} a_n = a$, then for given $\varepsilon > 0$, there exists a positive integer N such that $|a_n - a| < \varepsilon$ whenever n > N. Since $||a_n| - |a|| \le |a_n - a|$, it follows that $||a_n| - |a|| < \varepsilon$ whenever n > N. This shows that $\lim_{n\to\infty} |a_n| = |a|$. The converse is not true. For example, $\lim_{n\to\infty} |(-1)^n| = 1$, but $\lim_{n\to\infty} (-1)^n$ does not exist.

2. For each sequence below find its limit and determine whether it converges.

(a)
$$a_n = \frac{3n^2 - 2n^3}{5 + n^3 + 2n}$$

(b) $b_n = \frac{1 - n^9}{100n^8 + 9n^2}$
(c) $c_n = \frac{3^n + 2^n}{3^n - 4^n}$
(d) $d_n = \sqrt{n + 2} - \sqrt{n}$

Solution. (a) We have

$$a_n = \frac{3n^2 - 2n^3}{5 + n^3 + 2n} = \frac{-2n^3 + 3n^2}{n^3 + 2n + 5} = \frac{n^3(-2 + \frac{3}{n})}{n^3(1 + \frac{2}{n^2} + \frac{5}{n^3})} = \frac{-2 + \frac{3}{n}}{1 + \frac{2}{n^2} + \frac{5}{n^3}}.$$

It follows that $\lim_{n\to\infty} a_n = -2$. The sequence converges.

(b) We have

$$b_n = \frac{1 - n^9}{100n^8 + 9n^2} = \frac{-n^9 + 1}{100n^8 + 9n^2} = \frac{n^9(-1 + \frac{1}{n^9})}{n^8(100 + \frac{9}{n^6})} = n \cdot \frac{-1 + \frac{1}{n^9}}{100 + \frac{9}{n^6}}$$

Consequently, $\lim_{n\to\infty} b_n = -\infty$. The sequence diverges.

(c) We have

$$c_n = \frac{3^n + 2^n}{3^n - 4^n} = \frac{3^n \left(1 + \frac{2^n}{3^n}\right)}{-4^n \left(1 - \frac{3^n}{4^n}\right)} = -\left(\frac{3}{4}\right)^n \frac{1 + \left(\frac{2}{3}\right)^n}{1 - \left(\frac{3}{4}\right)^n}$$

Since $\lim_{n\to\infty} (\frac{3}{4})^n = 0$, we obtain $\lim_{n\to\infty} c_n = 0$. The sequence converges. (d) We have $(\sqrt{n+2}-\sqrt{n})(\sqrt{n+2}+\sqrt{n}) = \sqrt{n+2}^2 - \sqrt{n}^2 = (n+2)-n = 2$. It follows that $d_n = 2/(\sqrt{n+2}+\sqrt{n})$. Since $\sqrt{n+2}+\sqrt{n} \ge 2\sqrt{n}$, we obtain $0 < d_n \le 1/\sqrt{n}$. Since $\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$, by the squeeze theorem we conclude that $\lim_{n\to\infty} d_n = 0$.

- 3. Let $x_n := \sqrt{n^2 + n} n$ for $n \in \mathbb{N}$.
 - (a) Prove that

$$x_n = \frac{n}{\sqrt{n^2 + n} + n}.$$

Proof. We have $(\sqrt{n^2 + n} - n)(\sqrt{n^2 + n} + n) = (n^2 + n) - n^2 = n$. It follows that

$$x_n = \sqrt{n^2 + n} - n = \frac{n}{\sqrt{n^2 + n} + n}$$

(b) Show that $2n \le \sqrt{n^2 + n} + n \le 2n + 1$.

Proof. We have $n^2 \le n^2 + n \le (n+1)^2$. It follows that $n \le \sqrt{n^2 + n} \le n + 1$. Hence, $2n \le \sqrt{n^2 + n} + n \le 2n + 1$.

(c) Deduce from (a) and (b) that

$$\frac{n}{2n+1} \le x_n \le \frac{1}{2}.$$

Proof. It follows from (a) and (b) that

$$\frac{n}{2n+1} \le x_n \le \frac{n}{2n} = \frac{1}{2}.$$

(d) Find $\lim_{n\to\infty} x_n$.

Solution. Since $\lim_{n\to\infty} \frac{n}{2n+1} = \frac{1}{2}$. By the squeeze theorem for limits we obtain

$$\lim_{n \to \infty} x_n = \frac{1}{2}.$$

- 4. Let $a_1 := 1$ and set $a_{n+1} := (2a_n + 5)/6$ for n = 1, 2, ...
 - (a) Find the first five terms of the sequence $(a_n)_{n=1,2,\ldots}$.
 - Solution. $a_1 = 1, a_2 = 7/6, a_3 = 11/9, a_4 = 67/54, a_5 = 101/81.$
 - (b) Use mathematical induction to prove that $a_n \leq 2$ for all $n \in \mathbb{N}$.

Proof. We have $a_1 = 1 \leq 2$. Suppose $a_n \leq 2$. Then

$$a_{n+1} = \frac{2a_n + 5}{6} \le \frac{2 \cdot 2 + 5}{6} < 2$$

By the principle of mathematical induction we conclude that $a_n \leq 2$ for all $n \in \mathbb{N}$.

(c) Use mathematical induction to show that the sequence $(a_n)_{n=1,2,\ldots}$ is increasing.

Proof. We have $a_2 > a_1$. Suppose $a_{n+1} > a_n$. Then

$$a_{n+2} = \frac{2a_{n+1} + 5}{6} > \frac{2a_n + 5}{6} = a_{n+1}.$$

By the principle of mathematical induction we conclude that the sequence $(a_n)_{n=1,2,...}$ is increasing.

(d) Prove that the sequence $(a_n)_{n=1,2,\ldots}$ is convergent and find $\lim_{n\to\infty} a_n$.

Proof. Since the sequence $(a_n)_{n=1,2,...}$ is increasing and bounded above, it converges by Theorem 3.1. Suppose $\lim_{n\to\infty} a_n = a$. Taking limits of both sides of the equation $a_{n+1} = (2a_n + 5)/6$, we obtain

$$a = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{2a_n + 5}{6} = \frac{2a + 5}{6}.$$

It follows that 6a = 2a + 5. Consequently, $\lim_{n \to \infty} a_n = a = 5/4$.

5. Let $b_1 := 1$ and set $b_{n+1} := \sqrt{2b_n}$ for n = 1, 2, ...

(a) Prove that the sequence $(b_n)_{n=1,2,...}$ is increasing and bounded above by 2. *Proof*. We have $b_1 \leq 2$. Suppose $b_n \leq 2$. Then

$$b_{n+1} = \sqrt{2b_n} \le \sqrt{2 \cdot 2} \le 2.$$

By the principle of mathematical induction we conclude that $b_n \leq 2$ for all $n \in \mathbb{N}$. We have $b_2 = \sqrt{2} > 1 = b_1$. Suppose $b_{n+1} > b_n$. Then

$$b_{n+2} = \sqrt{2b_{n+1}} > \sqrt{2b_n} = b_{n+1}.$$

By the principle of mathematical induction we conclude that the sequence $(b_n)_{n=1,2,...}$ is increasing.

(b) Show that the sequence $(b_n)_{n=1,2,\ldots}$ is convergent and find $\lim_{n\to\infty} b_n$.

Proof. Since the sequence $(b_n)_{n=1,2,...}$ is increasing and bounded above, it converges, by Theorem 3.1. Suppose $\lim_{n\to\infty} b_n = b$. Taking limits of both sides of the equation $b_{n+1} = \sqrt{2b_n}$, we obtain $b = \sqrt{2b}$. It follows that $b^2 = 2b$. But b > 0. Hence, we conclude that $\lim_{n\to\infty} b_n = b = 2$.