MATH 314
 Assignment \#3

1. (a) Prove that $\lim _{n \rightarrow \infty} \sqrt{n}=\infty$ and $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$.

Proof. For $M>0$, let $N=\left\lfloor M^{2}\right\rfloor+1$. Then $n>N$ implies $\sqrt{n}>\sqrt{M^{2}}=M$. Hence, $\lim _{n \rightarrow \infty} \sqrt{n}=\infty$. By Theorem 1.3, it follows that $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$.
(b) Prove that if $\lim _{n \rightarrow \infty} a_{n}=a$, then $\lim _{n \rightarrow \infty}\left|a_{n}\right|=|a|$. Is the converse true? Justify your answer.

Proof. If $\lim _{n \rightarrow \infty} a_{n}=a$, then for given $\varepsilon>0$, there exists a positive integer N such that $\left|a_{n}-a\right|<\varepsilon$ whenever $n>N$. Since $\left|\left|a_{n}\right|-|a|\right| \leq\left|a_{n}-a\right|$, it follows that $\left|\left|a_{n}\right|-|a|\right|<\varepsilon$ whenever $n>N$. This shows that $\lim _{n \rightarrow \infty}\left|a_{n}\right|=|a|$. The converse is not true. For example, $\lim _{n \rightarrow \infty}\left|(-1)^{n}\right|=1$, but $\lim _{n \rightarrow \infty}(-1)^{n}$ does not exist.
2. For each sequence below find its limit and determine whether it converges.
(a) $a_{n}=\frac{3 n^{2}-2 n^{3}}{5+n^{3}+2 n}$
(b) $b_{n}=\frac{1-n^{9}}{100 n^{8}+9 n^{2}}$
(c) $c_{n}=\frac{3^{n}+2^{n}}{3^{n}-4^{n}}$
(d) $d_{n}=\sqrt{n+2}-\sqrt{n}$

Solution. (a) We have

$$
a_{n}=\frac{3 n^{2}-2 n^{3}}{5+n^{3}+2 n}=\frac{-2 n^{3}+3 n^{2}}{n^{3}+2 n+5}=\frac{n^{3}\left(-2+\frac{3}{n}\right)}{n^{3}\left(1+\frac{2}{n^{2}}+\frac{5}{n^{3}}\right)}=\frac{-2+\frac{3}{n}}{1+\frac{2}{n^{2}}+\frac{5}{n^{3}}} .
$$

It follows that $\lim _{n \rightarrow \infty} a_{n}=-2$. The sequence converges.
(b) We have

$$
b_{n}=\frac{1-n^{9}}{100 n^{8}+9 n^{2}}=\frac{-n^{9}+1}{100 n^{8}+9 n^{2}}=\frac{n^{9}\left(-1+\frac{1}{n^{9}}\right)}{n^{8}\left(100+\frac{9}{n^{6}}\right)}=n \cdot \frac{-1+\frac{1}{n^{9}}}{100+\frac{9}{n^{6}}}
$$

Consequently, $\lim _{n \rightarrow \infty} b_{n}=-\infty$. The sequence diverges.
(c) We have

$$
c_{n}=\frac{3^{n}+2^{n}}{3^{n}-4^{n}}=\frac{3^{n}\left(1+\frac{2^{n}}{3^{n}}\right)}{-4^{n}\left(1-\frac{3^{n}}{4^{n}}\right)}=-\left(\frac{3}{4}\right)^{n} \frac{1+\left(\frac{2}{3}\right)^{n}}{1-\left(\frac{3}{4}\right)^{n}}
$$

Since $\lim _{n \rightarrow \infty}\left(\frac{3}{4}\right)^{n}=0$, we obtain $\lim _{n \rightarrow \infty} c_{n}=0$. The sequence converges.
(d) We have $(\sqrt{n+2}-\sqrt{n})(\sqrt{n+2}+\sqrt{n})=\sqrt{n+2}^{2}-\sqrt{n}^{2}=(n+2)-n=2$. It follows that $d_{n}=2 /(\sqrt{n+2}+\sqrt{n})$. Since $\sqrt{n+2}+\sqrt{n} \geq 2 \sqrt{n}$, we obtain $0<d_{n} \leq 1 / \sqrt{n}$. Since $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$, by the squeeze theorem we conclude that $\lim _{n \rightarrow \infty} d_{n}=0$.
3. Let $x_{n}:=\sqrt{n^{2}+n}-n$ for $n \in \mathbb{N}$.
(a) Prove that

$$
x_{n}=\frac{n}{\sqrt{n^{2}+n}+n} .
$$

Proof. We have $\left(\sqrt{n^{2}+n}-n\right)\left(\sqrt{n^{2}+n}+n\right)=\left(n^{2}+n\right)-n^{2}=n$. It follows that

$$
x_{n}=\sqrt{n^{2}+n}-n=\frac{n}{\sqrt{n^{2}+n}+n} .
$$

(b) Show that $2 n \leq \sqrt{n^{2}+n}+n \leq 2 n+1$.

Proof. We have $n^{2} \leq n^{2}+n \leq(n+1)^{2}$. It follows that $n \leq \sqrt{n^{2}+n} \leq n+1$. Hence, $2 n \leq \sqrt{n^{2}+n}+n \leq 2 n+1$.
(c) Deduce from (a) and (b) that

$$
\frac{n}{2 n+1} \leq x_{n} \leq \frac{1}{2}
$$

Proof. It follows from (a) and (b) that

$$
\frac{n}{2 n+1} \leq x_{n} \leq \frac{n}{2 n}=\frac{1}{2}
$$

(d) Find $\lim _{n \rightarrow \infty} x_{n}$.

Solution. Since $\lim _{n \rightarrow \infty} \frac{n}{2 n+1}=\frac{1}{2}$. By the squeeze theorem for limits we obtain

$$
\lim _{n \rightarrow \infty} x_{n}=\frac{1}{2}
$$

4. Let $a_{1}:=1$ and set $a_{n+1}:=\left(2 a_{n}+5\right) / 6$ for $n=1,2, \ldots$.
(a) Find the first five terms of the sequence $\left(a_{n}\right)_{n=1,2, \ldots}$.

Solution. $a_{1}=1, a_{2}=7 / 6, a_{3}=11 / 9, a_{4}=67 / 54, a_{5}=101 / 81$.
(b) Use mathematical induction to prove that $a_{n} \leq 2$ for all $n \in \mathbb{N}$.

Proof. We have $a_{1}=1 \leq 2$. Suppose $a_{n} \leq 2$. Then

$$
a_{n+1}=\frac{2 a_{n}+5}{6} \leq \frac{2 \cdot 2+5}{6}<2 .
$$

By the principle of mathematical induction we conclude that $a_{n} \leq 2$ for all $n \in \mathbb{N}$.
(c) Use mathematical induction to show that the sequence $\left(a_{n}\right)_{n=1,2, \ldots}$ is increasing.

Proof. We have $a_{2}>a_{1}$. Suppose $a_{n+1}>a_{n}$. Then

$$
a_{n+2}=\frac{2 a_{n+1}+5}{6}>\frac{2 a_{n}+5}{6}=a_{n+1} .
$$

By the principle of mathematical induction we conclude that the sequence $\left(a_{n}\right)_{n=1,2, \ldots}$ is increasing.
(d) Prove that the sequence $\left(a_{n}\right)_{n=1,2, \ldots}$ is convergent and find $\lim _{n \rightarrow \infty} a_{n}$.

Proof. Since the sequence $\left(a_{n}\right)_{n=1,2, \ldots}$ is increasing and bounded above, it converges by Theorem 3.1. Suppose $\lim _{n \rightarrow \infty} a_{n}=a$. Taking limits of both sides of the equation $a_{n+1}=\left(2 a_{n}+5\right) / 6$, we obtain

$$
a=\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} \frac{2 a_{n}+5}{6}=\frac{2 a+5}{6} .
$$

It follows that $6 a=2 a+5$. Consequently, $\lim _{n \rightarrow \infty} a_{n}=a=5 / 4$.
5. Let $b_{1}:=1$ and set $b_{n+1}:=\sqrt{2 b_{n}}$ for $n=1,2, \ldots$.
(a) Prove that the sequence $\left(b_{n}\right)_{n=1,2, \ldots}$ is increasing and bounded above by 2 .

Proof. We have $b_{1} \leq 2$. Suppose $b_{n} \leq 2$. Then

$$
b_{n+1}=\sqrt{2 b_{n}} \leq \sqrt{2 \cdot 2} \leq 2 .
$$

By the principle of mathematical induction we conclude that $b_{n} \leq 2$ for all $n \in \mathbb{N}$. We have $b_{2}=\sqrt{2}>1=b_{1}$. Suppose $b_{n+1}>b_{n}$. Then

$$
b_{n+2}=\sqrt{2 b_{n+1}}>\sqrt{2 b_{n}}=b_{n+1} .
$$

By the principle of mathematical induction we conclude that the sequence $\left(b_{n}\right)_{n=1,2, \ldots}$ is increasing.
(b) Show that the sequence $\left(b_{n}\right)_{n=1,2, \ldots}$ is convergent and find $\lim _{n \rightarrow \infty} b_{n}$.

Proof. Since the sequence $\left(b_{n}\right)_{n=1,2, \ldots}$ is increasing and bounded above, it converges, by Theorem 3.1. Suppose $\lim _{n \rightarrow \infty} b_{n}=b$. Taking limits of both sides of the equation $b_{n+1}=\sqrt{2 b_{n}}$, we obtain $b=\sqrt{2 b}$. It follows that $b^{2}=2 b$. But $b>0$. Hence, we conclude that $\lim _{n \rightarrow \infty} b_{n}=b=2$.

