
MATH 314 Assignment #4

1. (a) Let an := 2(−1)n+1 + (−1)n(n+1)/2 for n ∈ IN. Find four subsequences of

(an)n=1,2,... such that they converge to different limits.

Solution. We have

a4k+1 = 1, a4k+2 = −3, a4k+3 = 3, a4k+4 = −1, k ∈ IN.

Thus (a4k+1)k=1,2,..., (a4k+2)k=1,2,..., (a4k+3)k=1,2,..., and (a4k+4)k=1,2,... are four sub-

sequences that converge to different limits.

(b) Let bn := [1 + (−1)n]n + 100/n for n ∈ IN. Find an increasing subsequence of

(bn)n=1,2,.... Also, find a convergent subsequence of (bn)n=1,2,....

Solution. We have b2k = 4k+50/k, and b2k+1 = 100/(2k+1), k ∈ IN. It is easily seen

that (b2k+1)k=1,2,... is a convergent subsequence of (bn)n=1,2,... and limk→∞ b2k+1 = 0.

Moreover, (b2k+6)k=1,2,... is an increasing subsequence of (bn)n=1,2,.... Indeed, we have

b2(k+1)+6 − b2k+6 =

[
4(k + 4) +

50

k + 4

]
−
[
4(k + 3) +

50

k + 3

]
= 4− 50

(k + 3)(k + 4)
≥ 4− 50

(1 + 3)(1 + 4)
> 0.

2. Let (xn)n=1,2,... be the sequence recursively defined by x1 := 1 and

xn+1 :=
1

4
(x2

n + 2), n ∈ IN.

(a) Show that 0 < xn ≤ 1 for all n ∈ IN.

Proof . We have x1 = 1. Suppose 0 < xn ≤ 1. Then xn+1 > 0 and

xn+1 =
1

4
(x2

n + 2) ≤ 1

4
(12 + 2) < 1.

By the principle of mathematical induction we conclude that 0 < xn ≤ 1 for all n ∈ IN.

(b) Prove that the sequence (xn)n=1,2,... is contractive.

Proof . For n ≥ 2 we have xn+1 = (x2
n + 2)/4 and xn = (x2

n−1 + 2)/4. It follows that

xn+1 − xn =
1

4
(x2

n + 2)− 1

4
(x2

n−1 + 2) =
1

4
(x2

n − x2
n−1) =

1

4
(xn + xn−1)(xn − xn−1).
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Since 0 < xn ≤ 1 for all n ∈ IN, we have |xn + xn−1| ≤ 2. Consequently,

|xn+1 − xn| =
1

4
|xn + xn−1||xn − xn−1| ≤

1

2
|xn − xn−1|.

This shows that the sequence (xn)n=1,2,... is contractive.

(c) Show that the sequence (xn)n=1,2,... converges and find its limit.

Proof . Since the sequence (xn)n=1,2,... is contractive, it is convergent. Suppose that

limn→∞ xn = c. Since xn ≤ 1 for all n ∈ IN, we have c ≤ 1. Taking limits of both

sides of the equation xn+1 = (x2
n+2)/4 as n → ∞, we obtain c = (c2+2)/4. It follows

that c2 − 4c+ 2 = 0. This together with c ≤ 1 gives the only solution c = 2−
√
2.

3. Find the sum of the following series.

(a)

∞∑
n=2

10 + (−3)n

5n−1
.

Solution. The series can be expressed as the sum of two geometric series:

∞∑
n=2

10 + (−3)n

5n−1
=

∞∑
n=2

10

5n−1
+

∞∑
n=2

(−3)n

5n−1
.

For the first geometric series, the initial term is 10/52−1 = 2 and the ratio is 1/5.

Hence
∞∑

n=2

10

5n−1
=

2

1− 1/5
=

2

4/5
=

5

2
.

For the second geometric series, the initial term is (−3)2/52−1 = 9/5 and the ratio is

−3/5. Hence
∞∑

n=2

(−3)n

5n−1
=

9/5

1− (−3/5)
=

9/5

8/5
=

9

8
.

Therefore
∞∑

n=2

10 + (−3)n

5n−1
=

5

2
+

9

8
=

29

8
.

(b)
∞∑

n=1

2 · 3n − 3 · 2n

6n
.
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Solution. We have

∞∑
n=1

2 · 3n − 3 · 2n

6n
=

∞∑
n=1

2 · 3n

6n
−

∞∑
n=1

3 · 2n

6n
=

∞∑
n=1

2

2n
−

∞∑
n=1

3

3n

=
1

1− 1/2
− 1

1− 1/3
= 2− 3

2
=

1

2
.

(c)
∞∑

n=2

1

(2n− 1)(2n+ 1)

Solution. Let an := 1/((2n− 1)(2n+ 1)) for n = 1, 2, . . .. We have

an =
1

(2n− 1)(2n+ 1)
=

1

2(2n− 1)
− 1

2(2n+ 1)
.

It follows that

sn = a2+ · · ·+an =
(1
6
− 1

10

)
+
( 1

10
− 1

14

)
+ · · ·+

( 1

4n− 2
− 1

4n+ 2

)
=

1

6
− 1

4n+ 2
.

Hence limn→∞ sn = 1/6. Thus, the series converges and its sum is 1/6.

(d)
∞∑

n=1

(−1)n

n(n+ 2)
.

Solution. We have

∞∑
n=1

(−1)n

n(n+ 2)
= − 1

1 · 3
+

1

2 · 4
− 1

3 · 5
+

1

4 · 6
− · · ·

= −
∞∑
k=1

1

(2k − 1)(2k + 1)
+

∞∑
k=1

1

2k(2k + 2)
.

By using the same method as in (c) we get

∞∑
k=1

1

(2k − 1)(2k + 1)
=

1

2
.

In order to find the sum
∑∞

k=1 1/(2k(2k + 2)), let bk := 1/(2k(2k+2)) for k = 1, 2, · · ·

and tn := b1 + b2 + · · ·+ bn for n = 1, 2, · · ·. Then

bk =
1

2k(2k + 2)
=

1

2(2k)
− 1

2(2k + 2)

and

tn =
(1
4
− 1

8

)
+
(1
8
− 1

12

)
+ · · ·+

( 1

4n
− 1

4n+ 4

)
=

1

4
− 1

4n+ 4
.
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It follows that limn→∞ tn = 1/4. Finally, we obtain

∞∑
n=1

(−1)n

n(n+ 2)
= −

∞∑
k=1

1

(2k − 1)(2k + 1)
+

∞∑
k=1

1

2k(2k + 2)
= −1

2
+

1

4
= −1

4
.

4. Test each of the following series for convergence or divergence. If the series converges,

determine whether it converges absolutely or conditionally. Justify your conclusions.

(a)
∞∑

n=1

1

21/n
.

Solution. We have limn→∞ 1/21/n = 1. By the divergence test, the series
∑∞

n=1 1/2
1/n

diverges.

(b)

∞∑
n=1

(
1√
n
− 10

n

)
.

Solution. We assert that

1√
n
− 10

n
>

1

2
√
n

for n > 400.

Since the series
∑∞

n=1 1/(2
√
n) diverges, the series in question also diverges, by the

comparison test. To verify our assertion we observe that

1√
n
− 10

n
>

1

2
√
n

⇔ 1

2
√
n
>

10

n
⇔

√
n > 20.

(c)
∞∑

n=1

2n

n!
.

Solution. Let un := 2n/n! for n = 1, 2, . . .. We have

lim
n→∞

un+1

un
= lim

n→∞

(
2n+1

(n+ 1)!

n!

2n

)
= lim

n→∞

2

n+ 1
= 0.

By the ratio test, the series
∑∞

n=1 2
n/n! converges. But 2n/n! > 0. So the series∑∞

n=1 2
n/n! converges absolutely.

(d)
∞∑

n=1

(−1)n
√
n

n+ 1
.

Solution. Let bn := (−1)n
√
n/(n + 1) for n = 1, 2, . . .. We use the alternating series

test to show that the series
∑∞

n=1(−1)nbn converges. Clearly, limn→∞ bn = 0. To

prove bn > bn+1 for all n ∈ IN we observe that
√
n

n+ 1
>

√
n+ 1

n+ 2
⇔ n

(n+ 1)2
>

n+ 1

(n+ 2)2
⇔ n(n+ 2)2 > (n+ 1)2(n+ 1).
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The last inequality is true because

n(n+2)2 − (n+1)2(n+1) = (n3 +4n2 +4n)− (n3 +3n2 +3n+1) = n2 + n− 1 > 0

for all n ∈ IN. Thus the series
∑∞

n=1(−1)n
√
n/(n+ 1) converges. But the series

∞∑
n=1

∣∣∣∣ (−1)n
√
n

n+ 1

∣∣∣∣ = ∞∑
n=1

√
n

n+ 1

diverges. Therefore, the series
∑∞

n=1(−1)n
√
n/(n+ 1) converges conditionally.

5. Suppose that
∑∞

n=1 an and
∑∞

n=1 bn are two convergent series.

(a) Show that the sequence (bn)n=1,2,... is bounded.

Proof . Since the series
∑∞

n=1 bn converges, we have limn→∞ bn = 0. Consequently,

the sequence (bn)n=1,2,... is bounded, by Theorem 1.2.

(b) If, in addition,
∑∞

n=1 an converges absolutely, prove that the series
∑∞

n=1 anbn

also converges absolutely.

Proof . Since the sequence (bn)n=1,2,... is bounded, there exists a positive number M

such that |bn| ≤ M for all n ∈ IN. It follows that |anbn| ≤ M |an| for all n ∈ IN.

But the series
∑∞

n=1 an converges absolutely; hence the series
∑∞

n=1 M |an| converges.

By the comparison test (Theorem 5.3), the series
∑∞

n=0 |anbn| converges. This shows

that the series
∑∞

n=1 anbn converges absolutely.

(c) Give an example of two conditionally convergent series
∑∞

n=1 an and
∑∞

n=1 bn

such that the series
∑∞

n=1 anbn diverges.

Solution. Choose an := (−1)n/
√
n and bn := (−1)n/

√
n for all n ∈ IN. Then

∑∞
n=1 an

and
∑∞

n=1 bn converge. But the series
∑∞

n=1 anbn =
∑∞

n=1 1/n diverges.

5


