1. (a) Let $a_{n}:=2(-1)^{n+1}+(-1)^{n(n+1) / 2}$ for $n \in \mathbb{N}$. Find four subsequences of $\left(a_{n}\right)_{n=1,2, \ldots}$ such that they converge to different limits.

Solution. We have

$$
a_{4 k+1}=1, \quad a_{4 k+2}=-3, \quad a_{4 k+3}=3, \quad a_{4 k+4}=-1, \quad k \in \mathbb{N} .
$$

Thus $\left(a_{4 k+1}\right)_{k=1,2, \ldots},\left(a_{4 k+2}\right)_{k=1,2, \ldots},\left(a_{4 k+3}\right)_{k=1,2, \ldots}$, and $\left(a_{4 k+4}\right)_{k=1,2, \ldots}$ are four subsequences that converge to different limits.
(b) Let $b_{n}:=\left[1+(-1)^{n}\right] n+100 / n$ for $n \in \mathbb{N}$. Find an increasing subsequence of $\left(b_{n}\right)_{n=1,2, \ldots}$. Also, find a convergent subsequence of $\left(b_{n}\right)_{n=1,2, \ldots}$.

Solution. We have $b_{2 k}=4 k+50 / k$, and $b_{2 k+1}=100 /(2 k+1), k \in \mathbb{N}$. It is easily seen that $\left(b_{2 k+1}\right)_{k=1,2, \ldots}$ is a convergent subsequence of $\left(b_{n}\right)_{n=1,2, \ldots}$ and $\lim _{k \rightarrow \infty} b_{2 k+1}=0$. Moreover, $\left(b_{2 k+6}\right)_{k=1,2, \ldots}$ is an increasing subsequence of $\left(b_{n}\right)_{n=1,2, \ldots}$. Indeed, we have

$$
\begin{aligned}
b_{2(k+1)+6}-b_{2 k+6} & =\left[4(k+4)+\frac{50}{k+4}\right]-\left[4(k+3)+\frac{50}{k+3}\right] \\
& =4-\frac{50}{(k+3)(k+4)} \geq 4-\frac{50}{(1+3)(1+4)}>0
\end{aligned}
$$

2. Let $\left(x_{n}\right)_{n=1,2, \ldots}$ be the sequence recursively defined by $x_{1}:=1$ and

$$
x_{n+1}:=\frac{1}{4}\left(x_{n}^{2}+2\right), \quad n \in \mathbb{N} .
$$

(a) Show that $0<x_{n} \leq 1$ for all $n \in \mathbb{N}$.

Proof. We have $x_{1}=1$. Suppose $0<x_{n} \leq 1$. Then $x_{n+1}>0$ and

$$
x_{n+1}=\frac{1}{4}\left(x_{n}^{2}+2\right) \leq \frac{1}{4}\left(1^{2}+2\right)<1 .
$$

By the principle of mathematical induction we conclude that $0<x_{n} \leq 1$ for all $n \in \mathbb{N}$.
(b) Prove that the sequence $\left(x_{n}\right)_{n=1,2, \ldots}$ is contractive.

Proof. For $n \geq 2$ we have $x_{n+1}=\left(x_{n}^{2}+2\right) / 4$ and $x_{n}=\left(x_{n-1}^{2}+2\right) / 4$. It follows that $x_{n+1}-x_{n}=\frac{1}{4}\left(x_{n}^{2}+2\right)-\frac{1}{4}\left(x_{n-1}^{2}+2\right)=\frac{1}{4}\left(x_{n}^{2}-x_{n-1}^{2}\right)=\frac{1}{4}\left(x_{n}+x_{n-1}\right)\left(x_{n}-x_{n-1}\right)$.

Since $0<x_{n} \leq 1$ for all $n \in \mathbb{N}$, we have $\left|x_{n}+x_{n-1}\right| \leq 2$. Consequently,

$$
\left|x_{n+1}-x_{n}\right|=\frac{1}{4}\left|x_{n}+x_{n-1}\right|\left|x_{n}-x_{n-1}\right| \leq \frac{1}{2}\left|x_{n}-x_{n-1}\right| .
$$

This shows that the sequence $\left(x_{n}\right)_{n=1,2, \ldots}$ is contractive.
(c) Show that the sequence $\left(x_{n}\right)_{n=1,2, \ldots}$ converges and find its limit.

Proof. Since the sequence $\left(x_{n}\right)_{n=1,2, \ldots}$ is contractive, it is convergent. Suppose that $\lim _{n \rightarrow \infty} x_{n}=c$. Since $x_{n} \leq 1$ for all $n \in \mathbb{N}$, we have $c \leq 1$. Taking limits of both sides of the equation $x_{n+1}=\left(x_{n}^{2}+2\right) / 4$ as $n \rightarrow \infty$, we obtain $c=\left(c^{2}+2\right) / 4$. It follows that $c^{2}-4 c+2=0$. This together with $c \leq 1$ gives the only solution $c=2-\sqrt{2}$.
3. Find the sum of the following series.
(a) $\sum_{n=2}^{\infty} \frac{10+(-3)^{n}}{5^{n-1}}$.

Solution. The series can be expressed as the sum of two geometric series:

$$
\sum_{n=2}^{\infty} \frac{10+(-3)^{n}}{5^{n-1}}=\sum_{n=2}^{\infty} \frac{10}{5^{n-1}}+\sum_{n=2}^{\infty} \frac{(-3)^{n}}{5^{n-1}}
$$

For the first geometric series, the initial term is $10 / 5^{2-1}=2$ and the ratio is $1 / 5$. Hence

$$
\sum_{n=2}^{\infty} \frac{10}{5^{n-1}}=\frac{2}{1-1 / 5}=\frac{2}{4 / 5}=\frac{5}{2}
$$

For the second geometric series, the initial term is $(-3)^{2} / 5^{2-1}=9 / 5$ and the ratio is $-3 / 5$. Hence

$$
\sum_{n=2}^{\infty} \frac{(-3)^{n}}{5^{n-1}}=\frac{9 / 5}{1-(-3 / 5)}=\frac{9 / 5}{8 / 5}=\frac{9}{8}
$$

Therefore

$$
\sum_{n=2}^{\infty} \frac{10+(-3)^{n}}{5^{n-1}}=\frac{5}{2}+\frac{9}{8}=\frac{29}{8}
$$

(b) $\sum_{n=1}^{\infty} \frac{2 \cdot 3^{n}-3 \cdot 2^{n}}{6^{n}}$.

Solution. We have

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{2 \cdot 3^{n}-3 \cdot 2^{n}}{6^{n}} & =\sum_{n=1}^{\infty} \frac{2 \cdot 3^{n}}{6^{n}}-\sum_{n=1}^{\infty} \frac{3 \cdot 2^{n}}{6^{n}}=\sum_{n=1}^{\infty} \frac{2}{2^{n}}-\sum_{n=1}^{\infty} \frac{3}{3^{n}} \\
& =\frac{1}{1-1 / 2}-\frac{1}{1-1 / 3}=2-\frac{3}{2}=\frac{1}{2}
\end{aligned}
$$

(c) $\sum_{n=2}^{\infty} \frac{1}{(2 n-1)(2 n+1)}$

Solution. Let $a_{n}:=1 /((2 n-1)(2 n+1))$ for $n=1,2, \ldots$. We have

$$
a_{n}=\frac{1}{(2 n-1)(2 n+1)}=\frac{1}{2(2 n-1)}-\frac{1}{2(2 n+1)} .
$$

It follows that $s_{n}=a_{2}+\cdots+a_{n}=\left(\frac{1}{6}-\frac{1}{10}\right)+\left(\frac{1}{10}-\frac{1}{14}\right)+\cdots+\left(\frac{1}{4 n-2}-\frac{1}{4 n+2}\right)=\frac{1}{6}-\frac{1}{4 n+2}$.

Hence $\lim _{n \rightarrow \infty} s_{n}=1 / 6$. Thus, the series converges and its sum is $1 / 6$.
(d) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n(n+2)}$.

Solution. We have

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n(n+2)} & =-\frac{1}{1 \cdot 3}+\frac{1}{2 \cdot 4}-\frac{1}{3 \cdot 5}+\frac{1}{4 \cdot 6}-\cdots \\
& =-\sum_{k=1}^{\infty} \frac{1}{(2 k-1)(2 k+1)}+\sum_{k=1}^{\infty} \frac{1}{2 k(2 k+2)} .
\end{aligned}
$$

By using the same method as in (c) we get

$$
\sum_{k=1}^{\infty} \frac{1}{(2 k-1)(2 k+1)}=\frac{1}{2} .
$$

In order to find the sum $\sum_{k=1}^{\infty} 1 /(2 k(2 k+2))$, let $b_{k}:=1 /(2 k(2 k+2))$ for $k=1,2, \cdots$ and $t_{n}:=b_{1}+b_{2}+\cdots+b_{n}$ for $n=1,2, \cdots$. Then

$$
b_{k}=\frac{1}{2 k(2 k+2)}=\frac{1}{2(2 k)}-\frac{1}{2(2 k+2)}
$$

and

$$
t_{n}=\left(\frac{1}{4}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{12}\right)+\cdots+\left(\frac{1}{4 n}-\frac{1}{4 n+4}\right)=\frac{1}{4}-\frac{1}{4 n+4} .
$$

It follows that $\lim _{n \rightarrow \infty} t_{n}=1 / 4$. Finally, we obtain

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n(n+2)}=-\sum_{k=1}^{\infty} \frac{1}{(2 k-1)(2 k+1)}+\sum_{k=1}^{\infty} \frac{1}{2 k(2 k+2)}=-\frac{1}{2}+\frac{1}{4}=-\frac{1}{4}
$$

4. Test each of the following series for convergence or divergence. If the series converges, determine whether it converges absolutely or conditionally. Justify your conclusions.
(a) $\sum_{n=1}^{\infty} \frac{1}{2^{1 / n}}$.

Solution. We have $\lim _{n \rightarrow \infty} 1 / 2^{1 / n}=1$. By the divergence test, the series $\sum_{n=1}^{\infty} 1 / 2^{1 / n}$ diverges.
(b) $\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}-\frac{10}{n}\right)$.

Solution. We assert that

$$
\frac{1}{\sqrt{n}}-\frac{10}{n}>\frac{1}{2 \sqrt{n}} \text { for } n>400
$$

Since the series $\sum_{n=1}^{\infty} 1 /(2 \sqrt{n})$ diverges, the series in question also diverges, by the comparison test. To verify our assertion we observe that

$$
\frac{1}{\sqrt{n}}-\frac{10}{n}>\frac{1}{2 \sqrt{n}} \Leftrightarrow \frac{1}{2 \sqrt{n}}>\frac{10}{n} \Leftrightarrow \sqrt{n}>20
$$

(c) $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$.

Solution. Let $u_{n}:=2^{n} / n$! for $n=1,2, \ldots$. We have

$$
\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=\lim _{n \rightarrow \infty}\left(\frac{2^{n+1}}{(n+1)!} \frac{n!}{2^{n}}\right)=\lim _{n \rightarrow \infty} \frac{2}{n+1}=0 .
$$

By the ratio test, the series $\sum_{n=1}^{\infty} 2^{n} / n!$ converges. But $2^{n} / n!>0$. So the series $\sum_{n=1}^{\infty} 2^{n} / n$! converges absolutely.
(d) $\sum_{n=1}^{\infty} \frac{(-1)^{n} \sqrt{n}}{n+1}$.

Solution. Let $b_{n}:=(-1)^{n} \sqrt{n} /(n+1)$ for $n=1,2, \ldots$. We use the alternating series test to show that the series $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ converges. Clearly, $\lim _{n \rightarrow \infty} b_{n}=0$. To prove $b_{n}>b_{n+1}$ for all $n \in \mathbb{N}$ we observe that

$$
\frac{\sqrt{n}}{n+1}>\frac{\sqrt{n+1}}{n+2} \Leftrightarrow \frac{n}{(n+1)^{2}}>\frac{n+1}{(n+2)^{2}} \Leftrightarrow n(n+2)^{2}>(n+1)^{2}(n+1)
$$

The last inequality is true because
$n(n+2)^{2}-(n+1)^{2}(n+1)=\left(n^{3}+4 n^{2}+4 n\right)-\left(n^{3}+3 n^{2}+3 n+1\right)=n^{2}+n-1>0$
for all $n \in \mathbb{N}$. Thus the series $\sum_{n=1}^{\infty}(-1)^{n} \sqrt{n} /(n+1)$ converges. But the series

$$
\sum_{n=1}^{\infty}\left|\frac{(-1)^{n} \sqrt{n}}{n+1}\right|=\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1}
$$

diverges. Therefore, the series $\sum_{n=1}^{\infty}(-1)^{n} \sqrt{n} /(n+1)$ converges conditionally.
5. Suppose that $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are two convergent series.
(a) Show that the sequence $\left(b_{n}\right)_{n=1,2, \ldots}$ is bounded.

Proof. Since the series $\sum_{n=1}^{\infty} b_{n}$ converges, we have $\lim _{n \rightarrow \infty} b_{n}=0$. Consequently, the sequence $\left(b_{n}\right)_{n=1,2, \ldots}$ is bounded, by Theorem 1.2.
(b) If, in addition, $\sum_{n=1}^{\infty} a_{n}$ converges absolutely, prove that the series $\sum_{n=1}^{\infty} a_{n} b_{n}$ also converges absolutely.

Proof. Since the sequence $\left(b_{n}\right)_{n=1,2, \ldots}$ is bounded, there exists a positive number M such that $\left|b_{n}\right| \leq M$ for all $n \in \mathbb{N}$. It follows that $\left|a_{n} b_{n}\right| \leq M\left|a_{n}\right|$ for all $n \in \mathbb{N}$. But the series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely; hence the series $\sum_{n=1}^{\infty} M\left|a_{n}\right|$ converges. By the comparison test (Theorem 5.3), the series $\sum_{n=0}^{\infty}\left|a_{n} b_{n}\right|$ converges. This shows that the series $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges absolutely.
(c) Give an example of two conditionally convergent series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ such that the series $\sum_{n=1}^{\infty} a_{n} b_{n}$ diverges.

Solution. Choose $a_{n}:=(-1)^{n} / \sqrt{n}$ and $b_{n}:=(-1)^{n} / \sqrt{n}$ for all $n \in \mathbb{N}$. Then $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converge. But the series $\sum_{n=1}^{\infty} a_{n} b_{n}=\sum_{n=1}^{\infty} 1 / n$ diverges.

