1. Find the following limits.

(a)
$$\lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 - 1}$$

Solution. We have

$$\lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 3)}{(x - 1)(x + 1)} = \lim_{x \to 1} \frac{x + 3}{x + 1} = \frac{4}{2} = 2.$$

(b) $\lim_{x \to 4} \frac{\sqrt{x-2}}{x-4}$.

Solution. We have

$$\lim_{x \to 4} \frac{\sqrt{x-2}}{x-4} = \lim_{x \to 4} \frac{(\sqrt{x-2})(\sqrt{x+2})}{(x-4)(\sqrt{x+2})} = \lim_{x \to 4} \frac{x-4}{(x-4)(\sqrt{x+2})} = \lim_{x \to 4} \frac{1}{\sqrt{x+2}} = \frac{1}{4}$$

- 2. Find the following limits.
 - (a) $\lim_{x \to \infty} \frac{2 5x 4x^2}{3x^2 + 1}$.

Solution. We have

$$\lim_{x \to \infty} \frac{2 - 5x - 4x^2}{3x^2 + 1} = \lim_{x \to \infty} \frac{x^2 \left(-4 - \frac{5}{x} + \frac{2}{x^2}\right)}{x^2 \left(3 + \frac{1}{x^2}\right)} = \lim_{x \to \infty} \frac{-4 - \frac{5}{x} + \frac{2}{x^2}}{3 + \frac{1}{x^2}} = -\frac{4}{3}$$

(b) $\lim_{x \to \infty} (\sqrt{x^2 + 2x} - x).$

Solution. We have

$$\sqrt{x^2 + 2x} - x = \frac{(\sqrt{x^2 + 2x} - x)(\sqrt{x^2 + 2x} + x)}{\sqrt{x^2 + 2x} + x} = \frac{2x}{\sqrt{x^2 + 2x} + x}$$

Note that $2x \leq \sqrt{x^2 + 2x} + x \leq 2x + 1$. Hence,

$$\frac{2x}{2x+1} \le \sqrt{x^2 + 2x} - x \le \frac{2x}{2x} = 1$$

But $\lim_{x\to\infty} (2x)/(2x+1) = 1$. By the squeeze theorem, we obtain

$$\lim_{x \to \infty} \left(\sqrt{x^2 + 2x} - x\right) = 1.$$

- 3. Let $f(x) = \sqrt{4-x}$ for $x \le 4$ and $g(x) = x^2$ for all $x \in \mathbb{R}$.
 - (a) Give the domains of the functions f + g, fg, $f \circ g$ and $g \circ f$. Solution. The domains of f + g, fg and $g \circ f$ are $(-\infty, 4]$. The domain of $f \circ g$ is [-2, 2].

(b) Find the values $f \circ g(0)$, $g \circ f(0)$, $f \circ g(1)$, $g \circ f(1)$, $f \circ g(2)$ and $g \circ f(2)$. Solution. We have $f \circ g(0) = 2$, $g \circ f(0) = 4$, $f \circ g(1) = \sqrt{3}$, $g \circ f(1) = 3$, $f \circ g(2) = 0$, $g \circ f(2) = 2$.

- (c) Are the functions $f \circ g$ and $g \circ f$ equal?
- Solution. Since $f \circ g(0) \neq g \circ f(0)$, the functions $f \circ g$ and $g \circ f$ are not equal.
- (d) Are $f \circ g(3)$ and $g \circ f(3)$ meaningful?
- Solution. $f \circ g(3)$ is not meaningful, while $g \circ f(3) = 1$.
- 4. Let f and g be two functions from \mathbb{R} to \mathbb{R} . Prove the following statements.

(a) If f is continuous, then the function |f| is continuous.

Proof. We wish to prove that |f| is continuous at every point $c \in \mathbb{R}$. Since f is continuous, for given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$|x-c| < \delta$$
 implies $|f(x) - f(c)| < \varepsilon$.

By the triangle inequality we have $||f(x)| - |f(c)|| \le |f(x) - f(c)|$. Hence

$$|x-c| < \delta$$
 implies $||f(x)| - |f(c)|| < \varepsilon$.

This shows that the function |f| is continuous.

(b) If f and g are continuous, then the function $\max\{f, g\}$ is continuous.

Proof. We have

$$\max\{f,g\} = \frac{f+g}{2} + \frac{|f-g|}{2}.$$

Since f and g are continuous, f + g and f - g are continuous, by Theorem 2.2. Moreover, part (a) tells us that |f - g| is continuous. Invoking Theorem 2.2 again, we conclude that the function max $\{f, g\}$ is continuous. 5. Let $f(x) := 1 + x^2$ and $g(x) := x(1 - x^2), x \in \mathbb{R}$. Moreover, let h be the function defined by

$$h(x) := \begin{cases} 1 & \text{if } x \ge 0, \\ -1 & \text{if } x < 0. \end{cases}$$

(a) Prove that $f \circ h$ and $h \circ f$ are continuous functions from \mathbb{R} to \mathbb{R} .

Proof. For $x \ge 0$ we have h(x) = 1 and hence

$$(f \circ h)(x) = f(h(x)) = f(1) = 1 + 1^2 = 2.$$

For x < 0 we have h(x) = -1 and hence

$$(f \circ h)(x) = f(h(x)) = f(-1) = 1 + (-1)^2 = 2.$$

Thus, $(f \circ h)(x) = 2$ for all $x \in \mathbb{R}$. As a constant function, $f \circ h$ is continuous on \mathbb{R} . We have f(x) > 0 for all $x \in \mathbb{R}$. Hence, $(h \circ f)(x) = h(f(x)) = 1$ for all $x \in \mathbb{R}$. As a constant function, $h \circ f$ is continuous on \mathbb{R} .

(b) Find the set of discontinuity points of $g \circ h$ and $h \circ g$, respectively.

Solution. Since h(x) = 1 or h(x) = -1. We have $(g \circ h)(x) = g(h(x)) = 0$ for all $x \in \mathbb{R}$. This, $g \circ h$ is continuous and hence the set of its discontinuous points is the empty set.

For $x \in (-\infty, -1)$ or $x \in (0, 1)$, we have

$$g(x) > 0$$
 and $(h \circ g)(x) = h(g(x)) = 1$.

For $x \in (-1,0)$ or $x \in (1,\infty)$, we have

$$g(x) < 0$$
 and $(h \circ g)(x) = h(g(x)) = -1$.

Therefore, the set of discontinuity points of $h \circ g$ is $\{-1, 0, 1\}$.