1. Find the following limits.
(a) $\lim _{x \rightarrow 1} \frac{x^{2}+2 x-3}{x^{2}-1}$.

Solution. We have

$$
\lim _{x \rightarrow 1} \frac{x^{2}+2 x-3}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{(x-1)(x+3)}{(x-1)(x+1)}=\lim _{x \rightarrow 1} \frac{x+3}{x+1}=\frac{4}{2}=2 .
$$

(b) $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}$.

Solution. We have

$$
\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}=\lim _{x \rightarrow 4} \frac{(\sqrt{x}-2)(\sqrt{x}+2)}{(x-4)(\sqrt{x}+2)}=\lim _{x \rightarrow 4} \frac{x-4}{(x-4)(\sqrt{x}+2)}=\lim _{x \rightarrow 4} \frac{1}{\sqrt{x}+2}=\frac{1}{4}
$$

2. Find the following limits.
(a) $\lim _{x \rightarrow \infty} \frac{2-5 x-4 x^{2}}{3 x^{2}+1}$.

Solution. We have

$$
\lim _{x \rightarrow \infty} \frac{2-5 x-4 x^{2}}{3 x^{2}+1}=\lim _{x \rightarrow \infty} \frac{x^{2}\left(-4-\frac{5}{x}+\frac{2}{x^{2}}\right)}{x^{2}\left(3+\frac{1}{x^{2}}\right)}=\lim _{x \rightarrow \infty} \frac{-4-\frac{5}{x}+\frac{2}{x^{2}}}{3+\frac{1}{x^{2}}}=-\frac{4}{3} .
$$

(b) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+2 x}-x\right)$.

Solution. We have

$$
\sqrt{x^{2}+2 x}-x=\frac{\left(\sqrt{x^{2}+2 x}-x\right)\left(\sqrt{x^{2}+2 x}+x\right)}{\sqrt{x^{2}+2 x}+x}=\frac{2 x}{\sqrt{x^{2}+2 x}+x} .
$$

Note that $2 x \leq \sqrt{x^{2}+2 x}+x \leq 2 x+1$. Hence,

$$
\frac{2 x}{2 x+1} \leq \sqrt{x^{2}+2 x}-x \leq \frac{2 x}{2 x}=1
$$

But $\lim _{x \rightarrow \infty}(2 x) /(2 x+1)=1$. By the squeeze theorem, we obtain

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+2 x}-x\right)=1
$$

3. Let $f(x)=\sqrt{4-x}$ for $x \leq 4$ and $g(x)=x^{2}$ for all $x \in \mathbb{R}$.
(a) Give the domains of the functions $f+g, f g, f \circ g$ and $g \circ f$.

Solution. The domains of $f+g, f g$ and $g \circ f$ are $(-\infty, 4]$. The domain of $f \circ g$ is $[-2,2]$.
(b) Find the values $f \circ g(0), g \circ f(0), f \circ g(1), g \circ f(1), f \circ g(2)$ and $g \circ f(2)$.

Solution. We have $f \circ g(0)=2, g \circ f(0)=4, f \circ g(1)=\sqrt{3}, g \circ f(1)=3, f \circ g(2)=0$, $g \circ f(2)=2$.
(c) Are the functions $f \circ g$ and $g \circ f$ equal?

Solution. Since $f \circ g(0) \neq g \circ f(0)$, the functions $f \circ g$ and $g \circ f$ are not equal.
(d) Are $f \circ g(3)$ and $g \circ f(3)$ meaningful?

Solution. $f \circ g(3)$ is not meaningful, while $g \circ f(3)=1$.
4. Let $f$ and $g$ be two functions from $\mathbb{R}$ to $\mathbb{R}$. Prove the following statements.
(a) If $f$ is continuous, then the function $|f|$ is continuous.

Proof. We wish to prove that $|f|$ is continuous at every point $c \in \mathbb{R}$. Since $f$ is continuous, for given $\varepsilon>0$, there exists $\delta>0$ such that

$$
|x-c|<\delta \quad \text { implies } \quad|f(x)-f(c)|<\varepsilon
$$

By the triangle inequality we have $||f(x)|-|f(c)|| \leq|f(x)-f(c)|$. Hence

$$
|x-c|<\delta \quad \text { implies } \quad||f(x)|-|f(c)||<\varepsilon
$$

This shows that the function $|f|$ is continuous.
(b) If $f$ and $g$ are continuous, then the function $\max \{f, g\}$ is continuous.

Proof. We have

$$
\max \{f, g\}=\frac{f+g}{2}+\frac{|f-g|}{2}
$$

Since $f$ and $g$ are continuous, $f+g$ and $f-g$ are continuous, by Theorem 2.2. Moreover, part (a) tells us that $|f-g|$ is continuous. Invoking Theorem 2.2 again, we conclude that the function $\max \{f, g\}$ is continuous.
5. Let $f(x):=1+x^{2}$ and $g(x):=x\left(1-x^{2}\right), x \in \mathbb{R}$. Moreover, let $h$ be the function defined by

$$
h(x):= \begin{cases}1 & \text { if } x \geq 0 \\ -1 & \text { if } x<0\end{cases}
$$

(a) Prove that $f \circ h$ and $h \circ f$ are continuous functions from $\mathbb{R}$ to $\mathbb{R}$.

Proof. For $x \geq 0$ we have $h(x)=1$ and hence

$$
(f \circ h)(x)=f(h(x))=f(1)=1+1^{2}=2 .
$$

For $x<0$ we have $h(x)=-1$ and hence

$$
(f \circ h)(x)=f(h(x))=f(-1)=1+(-1)^{2}=2 .
$$

Thus, $(f \circ h)(x)=2$ for all $x \in \mathbb{R}$. As a constant function, $f \circ h$ is continuous on $\mathbb{R}$. We have $f(x)>0$ for all $x \in \mathbb{R}$. Hence, $(h \circ f)(x)=h(f(x))=1$ for all $x \in \mathbb{R}$. As a constant function, $h \circ f$ is continuous on $\mathbb{R}$.
(b) Find the set of discontinuity points of $g \circ h$ and $h \circ g$, respectively.

Solution. Since $h(x)=1$ or $h(x)=-1$. We have $(g \circ h)(x)=g(h(x))=0$ for all $x \in \mathbb{R}$. This, $g \circ h$ is continuous and hence the set of its discontinuous points is the empty set.

For $x \in(-\infty,-1)$ or $x \in(0,1)$, we have

$$
g(x)>0 \quad \text { and } \quad(h \circ g)(x)=h(g(x))=1 .
$$

For $x \in(-1,0)$ or $x \in(1, \infty)$, we have

$$
g(x)<0 \quad \text { and } \quad(h \circ g)(x)=h(g(x))=-1 .
$$

Therefore, the set of discontinuity points of $h \circ g$ is $\{-1,0,1\}$.

