MATH 314 Assignment \#6

1. Let f be a continuous function from \mathbb{R} to \mathbb{R} such that $\lim _{|x| \rightarrow \infty} f(x)=\infty$, that is, for any real number M, there exists a positive real number K such that $f(x)>M$ whenever $|x| \geq K$.
(a) Fix a point $x_{0} \in \mathbb{R}$. Prove that there exists a positive real number a such that $-a \leq x_{0} \leq a$ and $f(x) \geq f\left(x_{0}\right)$ whenever $x \notin[-a, a]$.

Proof. Since $\lim _{|x| \rightarrow \infty} f(x)=\infty$, there exists some $K>0$ such that $f(x) \geq f\left(x_{0}\right)$ whenever $|x| \geq K$. Choose $a:=\max \left\{K,\left|x_{0}\right|\right\}$. Then we have $-a \leq x_{0} \leq a$ and $f(x) \geq f\left(x_{0}\right)$ whenever $x \notin[-a, a]$.
(b) Show that there exists some $c \in \mathbb{R}$ such that $f(c) \leq f(x)$ for all $x \in \mathbb{R}$, that is, f attains its minimum at c.
Proof. Since f is continuous, f attains its minimum on the closed interval $[-a, a]$, that is, there exists some $c \in[-a, a]$ such that $f(c) \leq f(x)$ for all $x \in[-a, a]$. It follows that $f(c) \leq f\left(x_{0}\right)$ since $x_{0} \in[-a, a]$. Consequently, for $x \in \mathbb{R} \backslash[-a, a]$ we have $f(c) \leq f\left(x_{0}\right) \leq f(x)$. Therefore, $f(c) \leq f(x)$ for all $x \in \mathbb{R}$.
2. The Intermediate Value Theorem will be used in the following problems.
(a) Show that the equation $2^{x}=3 x$ has a solution $c \in(1,4)$.

Proof. Let $g(x):=2^{x}-3 x, 1 \leq x \leq 4$. Then we have $g(1)=2-3<0$ and $g(4)=2^{4}-3 \cdot 4=4>0$. By the Intermediate Value Theorem, there exists some $c \in(1,4)$ such that $g(c)=0$. For this c we have $2^{c}=3 c$.
(b) Let p be a cubic polynomial, i.e., $p(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}, x \in \mathbb{R}$, where $a_{3} \neq 0$. Prove that p has at least one real root.

Proof. Suppose that $a_{3}>0$. Then we have

$$
\lim _{x \rightarrow \infty} p(x)=\lim _{x \rightarrow \infty} x^{3}\left(a_{3}+a_{2} / x+a_{1} / x^{2}+a_{0} / x^{3}\right)=\infty .
$$

Hence, there exists some $x_{1} \in \mathbb{R}$ such that $p\left(x_{1}\right)>0$. Moreover,

$$
\lim _{x \rightarrow-\infty} p(x)=\lim _{x \rightarrow-\infty} x^{3}\left(a_{3}+a_{2} / x+a_{1} / x^{2}+a_{0} / x^{3}\right)=-\infty
$$

Hence, there exists some $x_{2} \in \mathbb{R}$ such that $p\left(x_{2}\right)<0$. By the Intermediate Value Theorem, there exists a real number c between x_{1} and x_{2} such that $p(c)=0$. If $a_{3}<0$, then $\lim _{x \rightarrow \infty} p(x)=-\infty$ and $\lim _{x \rightarrow-\infty} p(x)=\infty$. A similar argument shows that p has at least one real root.
3. (a) Suppose that f is a continuous function from $[0, \infty)$ to \mathbb{R}. Moreover, there exists some $a>0$ such that f is uniformly continuous on $[a, \infty)$. Prove that f is uniformly continuous on $[0, \infty)$.

Proof. Since f is continuous on $[0, a], f$ is uniformly continuous on $[0, a]$, by Theorem 4.2. Let $\varepsilon>0$ be given. Since f is uniformly continuous on $[0, a]$, there exists some $\delta_{1}>0$ such that $|f(x)-f(y)|<\varepsilon$ whenever $x, y \in[0, a]$ and $|x-y|<\delta_{1}$. Since f is uniformly continuous on $[a, \infty)$, there exists some $\delta_{2}>0$ such that $|f(x)-f(y)|<\varepsilon$ whenever $x, y \in[a, \infty)$ and $|x-y|<\delta_{2}$. Since f is continuous at a, there exists some $\delta_{0}>0$ such that $|f(x)-f(a)|<\varepsilon / 2$ whenever $x \in[0, \infty)$ and $|x-a|<\delta_{0}$. Let $\delta:=\min \left\{\delta_{0}, \delta_{1}, \delta_{2}\right\}$. Then $\delta>0$. Now let $x, y \in[0, \infty)$ satisfy $|x-y|<\delta$. If both x and y lie in $[0, a]$, or both lie in $[a, \infty)$, we have $|f(x)-f(y)|<\varepsilon$. Suppose that one of x and y, say x, is in $[0, a]$ and the other is in $[a, \infty)$. Then $x \leq a \leq y$. It follows that $|x-a|=a-x \leq y-x<\delta \leq \delta_{0}$ and $|y-a|=y-a<\delta_{0}$. Consequently, $|f(x)-f(y)| \leq|f(x)-f(a)|+|f(a)-f(y)|<\varepsilon$. Therefore, $|f(x)-f(y)|<\varepsilon$ whenever $x, y \in[0, \infty)$ and $|x-y|<\delta$. This shows that f is uniformly continuous on $[0, \infty)$.
(b) Let g be the function from $[0, \infty)$ to \mathbb{R} given by $g(x)=\sqrt{x}, x \geq 0$. Prove that g is uniformly continuous on $[0, \infty)$.

Proof. Since g is continuous on $[0,1], g$ is uniformly continuous on $[0,1]$, by Theorem 4.2. In order to show that g is uniformly continuous on $[0, \infty)$, it suffices, by part (a), to prove that g is uniformly continuous on $[1, \infty)$. Let $x, y \in[1, \infty)$. We have

$$
|g(x)-g(y)|=|\sqrt{x}-\sqrt{y}|=\frac{|x-y|}{\sqrt{x}+\sqrt{y}} \leq|x-y|,
$$

because $\sqrt{x}+\sqrt{y} \geq 1$ for $x, y \in[1, \infty)$. Thus g is a Lipschitz function on $[1, \infty)$. Therefore g is uniformly continuous on $[1, \infty)$.
4. Let f be a real-valued function defined by

$$
f(x)= \begin{cases}2^{x} & \text { for } 0 \leq x \leq 1 \\ 3-1 / x^{2} & \text { for } 1<x \leq 2\end{cases}
$$

(a) Show that f is continuous and strictly increasing on $[0,2]$.

Proof. Let $c \in[0,2]$. If $c \in[0,1)$ we have $\lim _{x \rightarrow c} f(x)=f(c)$, since the exponential function is continuous. For $c \in(1,2]$, we also have $\lim _{x \rightarrow c} f(x)=f(c)$. Let us consider the case $c=1$. We have

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 2^{x}=2=f(1) \quad \text { and } \quad \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(3-\frac{1}{x^{2}}\right)=2=f(1)
$$

This shows that f is also continuous at 1 .
Suppose that $x_{1}, x_{2} \in[0,2]$ and $x_{1}<x_{2}$. If $x_{2} \leq 1$, then $f\left(x_{1}\right)=2^{x_{1}}<2^{x_{2}}=f\left(x_{2}\right)$. If $x_{1} \leq 1<x_{2}$, then $f\left(x_{1}\right) \leq f(1)=2<3-1 / x_{2}^{2}=f\left(x_{2}\right)$. If $1<x_{1}$, then $f\left(x_{1}\right)=3-1 / x_{1}^{2}<3-1 / x_{2}^{2}=f\left(x_{2}\right)$. This shows that f is strictly increasing on $[0,2]$.
(b) Find an explicit expression for the inverse function f^{-1} including its domain and range.
Solution. The function f maps the interval $[0,2]$ one-to-one and onto the interval $[1,11 / 4]$. Consequently, the inverse function f^{-1} maps the interval $[1,11 / 4]$ one-toone and onto the interval $[0,2]$. We have

$$
f^{-1}(y)= \begin{cases}\log _{2} y & \text { for } 1 \leq y \leq 2 \\ 1 / \sqrt{3-y} & \text { for } 2<y \leq 11 / 4\end{cases}
$$

(c) Is f^{-1} continuous on its domain? Justify your answer.

Answer. By the inverse function theorem, f^{-1} is continuous on $[1,11 / 4]$. This conclusion can also be derived directly from the above expression of f^{-1}.
5. (a) Let f be the function given by

$$
f(x):= \begin{cases}3^{-1 /|x|} & \text { for } x \in(-\infty, 0) \cup(0, \infty) \\ 0 & \text { for } x=0\end{cases}
$$

Find $\lim _{x \rightarrow 0^{-}} f(x)$ and $\lim _{x \rightarrow 0^{+}} f(x)$. Is f continuous on $(-\infty, \infty)$? Justify your answer.
Solution. Clearly, f is continuous at any point in $(-\infty, 0) \cup(0, \infty)$. We claim that f is also continuous at 0 . Let $y:=-1 /|x|$ for $x \neq 0$. We have

$$
\lim _{x \rightarrow 0^{+}} y=\lim _{x \rightarrow 0^{+}} \frac{-1}{x}=-\infty \quad \text { and } \quad \lim _{x \rightarrow 0^{-}} y=\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty
$$

It follows that

$$
\lim _{x \rightarrow 0^{-}} 3^{-1 /|x|}=\lim _{y \rightarrow-\infty} 3^{y}=0 \quad \text { and } \quad \lim _{x \rightarrow 0^{+}} 3^{-1 /|x|}=\lim _{y \rightarrow-\infty} 3^{y}=0 .
$$

Consequently, $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=0=f(0)$. Therefore, f is continuous on $(-\infty, \infty)$.
(b) Let $g(x):=\log _{2} x$ for $0<x<\infty$. Prove that g is not uniformly continuous on the interval $(0,1)$.
Proof. For $n=1,2, \ldots$, let $x_{n}:=2^{-n}$ and $y_{n}:=2^{-n-1}$. Then $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$. But

$$
g\left(x_{n}\right)-g\left(y_{n}\right)=\log _{2} 2^{-n}-\log _{2} 2^{-n-1}=(-n)-(-n-1)=1 .
$$

By Theorem 4.1, the function g is not uniformly continuous on $(0,1)$.

