
MATH 314 Assignment #6

1. Let f be a continuous function from IR to IR such that lim|x|→∞ f(x) = ∞, that is,

for any real number M , there exists a positive real number K such that f(x) > M

whenever |x| ≥ K.

(a) Fix a point x0 ∈ IR. Prove that there exists a positive real number a such that

−a ≤ x0 ≤ a and f(x) ≥ f(x0) whenever x /∈ [−a, a].

Proof . Since lim|x|→∞ f(x) = ∞, there exists some K > 0 such that f(x) ≥ f(x0)

whenever |x| ≥ K. Choose a := max{K, |x0|}. Then we have −a ≤ x0 ≤ a and

f(x) ≥ f(x0) whenever x /∈ [−a, a].

(b) Show that there exists some c ∈ IR such that f(c) ≤ f(x) for all x ∈ IR, that is,

f attains its minimum at c.

Proof . Since f is continuous, f attains its minimum on the closed interval [−a, a],

that is, there exists some c ∈ [−a, a] such that f(c) ≤ f(x) for all x ∈ [−a, a]. It

follows that f(c) ≤ f(x0) since x0 ∈ [−a, a]. Consequently, for x ∈ IR\ [−a, a] we have

f(c) ≤ f(x0) ≤ f(x). Therefore, f(c) ≤ f(x) for all x ∈ IR.

2. The Intermediate Value Theorem will be used in the following problems.

(a) Show that the equation 2x = 3x has a solution c ∈ (1, 4).

Proof . Let g(x) := 2x − 3x, 1 ≤ x ≤ 4. Then we have g(1) = 2 − 3 < 0 and

g(4) = 24 − 3 · 4 = 4 > 0. By the Intermediate Value Theorem, there exists some

c ∈ (1, 4) such that g(c) = 0. For this c we have 2c = 3c.

(b) Let p be a cubic polynomial, i.e., p(x) = a3x
3 + a2x

2 + a1x + a0, x ∈ IR, where

a3 ̸= 0. Prove that p has at least one real root.

Proof . Suppose that a3 > 0. Then we have

lim
x→∞

p(x) = lim
x→∞

x3(a3 + a2/x+ a1/x
2 + a0/x

3) = ∞.

Hence, there exists some x1 ∈ IR such that p(x1) > 0. Moreover,

lim
x→−∞

p(x) = lim
x→−∞

x3(a3 + a2/x+ a1/x
2 + a0/x

3) = −∞.

Hence, there exists some x2 ∈ IR such that p(x2) < 0. By the Intermediate Value

Theorem, there exists a real number c between x1 and x2 such that p(c) = 0. If

a3 < 0, then limx→∞ p(x) = −∞ and limx→−∞ p(x) = ∞. A similar argument shows

that p has at least one real root.
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3. (a) Suppose that f is a continuous function from [0,∞) to IR. Moreover, there exists

some a > 0 such that f is uniformly continuous on [a,∞). Prove that f is uniformly

continuous on [0,∞).

Proof . Since f is continuous on [0, a], f is uniformly continuous on [0, a], by Theorem

4.2. Let ε > 0 be given. Since f is uniformly continuous on [0, a], there exists some

δ1 > 0 such that |f(x)− f(y)| < ε whenever x, y ∈ [0, a] and |x− y| < δ1. Since f is

uniformly continuous on [a,∞), there exists some δ2 > 0 such that |f(x)− f(y)| < ε

whenever x, y ∈ [a,∞) and |x− y| < δ2. Since f is continuous at a, there exists some

δ0 > 0 such that |f(x) − f(a)| < ε/2 whenever x ∈ [0,∞) and |x − a| < δ0. Let

δ := min{δ0, δ1, δ2}. Then δ > 0. Now let x, y ∈ [0,∞) satisfy |x − y| < δ. If both

x and y lie in [0, a], or both lie in [a,∞), we have |f(x) − f(y)| < ε. Suppose that

one of x and y, say x, is in [0, a] and the other is in [a,∞). Then x ≤ a ≤ y. It

follows that |x− a| = a− x ≤ y − x < δ ≤ δ0 and |y − a| = y − a < δ0. Consequently,

|f(x)−f(y)| ≤ |f(x)−f(a)|+ |f(a)−f(y)| < ε. Therefore, |f(x)−f(y)| < ε whenever

x, y ∈ [0,∞) and |x− y| < δ. This shows that f is uniformly continuous on [0,∞).

(b) Let g be the function from [0,∞) to IR given by g(x) =
√
x, x ≥ 0. Prove that g

is uniformly continuous on [0,∞).

Proof . Since g is continuous on [0, 1], g is uniformly continuous on [0, 1], by Theorem

4.2. In order to show that g is uniformly continuous on [0,∞), it suffices, by part (a),

to prove that g is uniformly continuous on [1,∞). Let x, y ∈ [1,∞). We have

∣∣g(x)− g(y)
∣∣ = ∣∣√x−√

y
∣∣ = |x− y|√

x+
√
y
≤ |x− y|,

because
√
x +

√
y ≥ 1 for x, y ∈ [1,∞). Thus g is a Lipschitz function on [1,∞).

Therefore g is uniformly continuous on [1,∞).

4. Let f be a real-valued function defined by

f(x) =

{
2x for 0 ≤ x ≤ 1,
3− 1/x2 for 1 < x ≤ 2.

(a) Show that f is continuous and strictly increasing on [0, 2].

Proof . Let c ∈ [0, 2]. If c ∈ [0, 1) we have limx→c f(x) = f(c), since the exponential

function is continuous. For c ∈ (1, 2], we also have limx→c f(x) = f(c). Let us consider

the case c = 1. We have

lim
x→1−

f(x) = lim
x→1−

2x = 2 = f(1) and lim
x→1+

f(x) = lim
x→1+

(
3− 1

x2

)
= 2 = f(1).
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This shows that f is also continuous at 1.

Suppose that x1, x2 ∈ [0, 2] and x1 < x2. If x2 ≤ 1, then f(x1) = 2x1 < 2x2 = f(x2).

If x1 ≤ 1 < x2, then f(x1) ≤ f(1) = 2 < 3 − 1/x2
2 = f(x2). If 1 < x1, then

f(x1) = 3−1/x2
1 < 3−1/x2

2 = f(x2). This shows that f is strictly increasing on [0, 2].

(b) Find an explicit expression for the inverse function f−1 including its domain and

range.

Solution. The function f maps the interval [0, 2] one-to-one and onto the interval

[1, 11/4]. Consequently, the inverse function f−1 maps the interval [1, 11/4] one-to-

one and onto the interval [0, 2]. We have

f−1(y) =

{
log2 y for 1 ≤ y ≤ 2,

1/
√
3− y for 2 < y ≤ 11/4.

(c) Is f−1 continuous on its domain? Justify your answer.

Answer . By the inverse function theorem, f−1 is continuous on [1, 11/4]. This con-

clusion can also be derived directly from the above expression of f−1.

5. (a) Let f be the function given by

f(x) :=

{
3−1/|x| for x ∈ (−∞, 0) ∪ (0,∞),
0 for x = 0.

Find limx→0− f(x) and limx→0+ f(x). Is f continuous on (−∞,∞)? Justify your

answer.

Solution. Clearly, f is continuous at any point in (−∞, 0) ∪ (0,∞). We claim that f

is also continuous at 0. Let y := −1/|x| for x ̸= 0. We have

lim
x→0+

y = lim
x→0+

−1

x
= −∞ and lim

x→0−
y = lim

x→0−

1

x
= −∞.

It follows that

lim
x→0−

3−1/|x| = lim
y→−∞

3y = 0 and lim
x→0+

3−1/|x| = lim
y→−∞

3y = 0.

Consequently, limx→0− f(x) = limx→0+ f(x) = 0 = f(0). Therefore, f is continuous

on (−∞,∞).

(b) Let g(x) := log2 x for 0 < x < ∞. Prove that g is not uniformly continuous on

the interval (0, 1).

Proof . For n = 1, 2, . . ., let xn := 2−n and yn := 2−n−1. Then limn→∞(xn − yn) = 0.

But

g(xn)− g(yn) = log2 2
−n − log2 2

−n−1 = (−n)− (−n− 1) = 1.

By Theorem 4.1, the function g is not uniformly continuous on (0, 1).
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