MATH 314 Assignment #6

1. Let f be a continuous function from IR to IR such that lim|,_, f(z) = oo, that is,
for any real number M, there exists a positive real number K such that f(x) > M

whenever |z| > K.
(a) Fix a point zg € IR. Prove that there exists a positive real number a such that
—a < zg <aand f(x) > f(zo) whenever x ¢ [—a,al.

Proof . Since lim;|_,o f(x) = oo, there exists some K > 0 such that f(z) > f(zo)
whenever |z| > K. Choose a := max{K, |rg|}. Then we have —a < zy < a and
f(x) > f(xo) whenever x ¢ [—a,al.

(b) Show that there exists some ¢ € IR such that f(c) < f(x) for all z € IR, that is,

f attains its minimum at c.

Proof. Since f is continuous, f attains its minimum on the closed interval [—a,al,
that is, there exists some ¢ € [—a,a] such that f(c) < f(x) for all x € [—a,a]. It
follows that f(c) < f(xg) since xy € [—a, a]. Consequently, for x € IR\ [—a, a] we have

fle) < f(xo) < f(x). Therefore, f(c) < f(x) for all z € R.
2. The Intermediate Value Theorem will be used in the following problems.
(a) Show that the equation 2¥ = 3x has a solution ¢ € (1,4).
Proof. Let g(z) := 2 — 3z, 1 < & < 4. Then we have g(1) = 2 —3 < 0 and

g(4) =2 —3.4 =4 > 0. By the Intermediate Value Theorem, there exists some
¢ € (1,4) such that g(c) = 0. For this ¢ we have 2¢ = 3c.

(b) Let p be a cubic polynomial, i.e., p(x) = azz® + asx® + a1x + ag, * € IR, where

as # 0. Prove that p has at least one real root.

Proof. Suppose that ag > 0. Then we have

lim p(z) = lim 23(as + az/z + a1 /2% + ag/23) = co.
T—r 00 T—>00

Hence, there exists some 7 € IR such that p(x1) > 0. Moreover,

lim p(z) = lim 2%(as + as/x + a1 /2% + ap/2®) = —cc.
Tr——00 Tr——00
Hence, there exists some x5 € IR such that p(z2) < 0. By the Intermediate Value
Theorem, there exists a real number ¢ between x; and zo such that p(c) = 0. If
as < 0, then lim,_, . p(z) = —oo and lim,_, _ p(x) = co. A similar argument shows

that p has at least one real root.



3.

(a) Suppose that f is a continuous function from [0, c0) to IR. Moreover, there exists
some a > 0 such that f is uniformly continuous on [a,c0). Prove that f is uniformly

continuous on [0, 00).

Proof . Since f is continuous on [0, a], f is uniformly continuous on [0, a], by Theorem
4.2. Let € > 0 be given. Since f is uniformly continuous on [0, a|, there exists some
41 > 0 such that |f(z) — f(y)| < € whenever z,y € [0,a] and |z — y| < d;. Since f is
uniformly continuous on [a, 00), there exists some do > 0 such that |f(z) — f(y)] < e
whenever z,y € [a,00) and |z — y| < d2. Since f is continuous at a, there exists some
do > 0 such that |f(z) — f(a)| < £/2 whenever z € [0,00) and |z — a|] < dp. Let
d := min{dp,d1,d2}. Then § > 0. Now let z,y € [0,00) satisfy |[x — y| < 4. If both
x and y lie in [0, a], or both lie in [a,00), we have |f(z) — f(y)| < e. Suppose that
one of z and y, say z, is in [0,a] and the other is in [a,00). Then z < a < y. It
follows that |zt —a|=a—2z <y—x < <Jp and |y —a| =y —a < §y. Consequently,
[f (@) = f(y)l <[f(x) = fla)|+]|f(a) = f(y)| <e. Therefore, [f(x) - f(y)| < e whenever
x,y € [0,00) and |z — y| < 6. This shows that f is uniformly continuous on [0, c0).

(b) Let g be the function from [0,00) to IR given by g(x) = \/x, z > 0. Prove that g

is uniformly continuous on [0, o).

Proof . Since g is continuous on [0, 1], g is uniformly continuous on [0, 1], by Theorem
4.2. In order to show that g is uniformly continuous on [0, 00), it suffices, by part (a),

to prove that g is uniformly continuous on [1,00). Let z,y € [1,00). We have
|~y
g9(x) —g(y)| = [Va - Vy| = < |z —yl,

because \/z + /y > 1 for z,y € [1,00). Thus g is a Lipschitz function on [1,00).

Therefore g is uniformly continuous on [1, c0).

Let f be a real-valued function defined by

2 for 0 <x <1,
)= 3—1/2? forl<ux<2.

(a) Show that f is continuous and strictly increasing on [0, 2].

Proof. Let ¢ € [0,2]. If ¢ € [0,1) we have lim,_,. f(z) = f(c), since the exponential
function is continuous. For ¢ € (1, 2], we also have lim,_,. f(z) = f(c). Let us consider
the case ¢ = 1. We have

lim f(z)= lim 2° =2=f(1) and lim f(z)= lim (3 - i) = 2= f(1).

T—s1- T—1- T—1+ r—1+ x2



This shows that f is also continuous at 1.

Suppose that z1,z9 € [0,2] and 1 < z9. If 5 < 1, then f(z1) = 2% < 272 = f(x5).
If 17 < 1 < z9, then f(z1) < f(1) = 2 < 3 —1/23 = f(x). If 1 < mp, then
f(z1) =3—1/22 <3—1/23 = f(x2). This shows that f is strictly increasing on [0, 2].
(b) Find an explicit expression for the inverse function f~! including its domain and

range.

Solution. The function f maps the interval [0,2] one-to-one and onto the interval
[1,11/4]. Consequently, the inverse function f~! maps the interval [1,11/4] one-to-

one and onto the interval [0, 2]. We have

{logzy for 1 <y <2,

1/v/3—y for2<y<11/4.

(c) Is f~! continuous on its domain? Justify your answer.

F ) =

Answer. By the inverse function theorem, f~1 is continuous on [1,11/4]. This con-

clusion can also be derived directly from the above expression of f~!.
(a) Let f be the function given by

—1/|=| _

flz) = {3 for z € (—o00,0) U (0, 00),
0 for x = 0.

Find lim,_,o- f(z) and lim,_,o+ f(z). Is f continuous on (—o0,00)? Justify your

answer.

Solution. Clearly, f is continuous at any point in (—o0,0) U (0,00). We claim that f

is also continuous at 0. Let y := —1/|z| for = # 0. We have
lim y = lim —— =—00 and lim y= lim — = —o0.
z—0t z—0t T z—0— z—0~- T

It follows that

lim 37Vl = lim 3 =0 and lim 3~ VIl = lim 3¥ =o0.
z—0" y—r—00 z—0t y——00

Consequently, lim,_,o- f(x) = lim,_,o+ f(z) = 0 = f(0). Therefore, f is continuous
on (—o0,00).
(b) Let g(x) :=logyz for 0 < z < co. Prove that g is not uniformly continuous on
the interval (0, 1).
Proof. Forn=1,2,..., let x,, := 27" and y,, := 27"~ 1. Then lim, o (2, — yn) = 0.
But
9(wn) = gyn) =logy 27" —logy 27" "' = (-n) = (-n - 1) = L

By Theorem 4.1, the function g is not uniformly continuous on (0, 1).



