1. Let $f(x):=x^{2}$ for $x \geq 0$ and $f(x):=0$ for $x<0$.
(a) Use the definition of derivative to show that f is differentiable at 0 .

Proof. We have

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{x^{2}}{x}=\lim _{x \rightarrow 0^{+}} x=0
$$

and

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=0
$$

This shows that f is differentiable at 0 and $f^{\prime}(0)=0$.
(b) Find an explicit expression of $f^{\prime}(x)$ for $x \in \mathbb{R}$.

Solution. We have $f^{\prime}(x)=2 x$ for $x \geq 0$ and $f^{\prime}(x)=0$ for $x<0$.
(c) Is f^{\prime} continuous on \mathbb{R} ? Is f^{\prime} differentiable on \mathbb{R} ?

Answer. f^{\prime} is continuous on \mathbb{R}. But f^{\prime} is not differentiable at 0 , since

$$
\lim _{x \rightarrow 0^{+}} \frac{f^{\prime}(x)-f^{\prime}(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{2 x}{x}=2 \quad \text { and } \quad \lim _{x \rightarrow 0^{-}} \frac{f^{\prime}(x)-f^{\prime}(0)}{x-0}=0
$$

2. Find the derivative of each of the following functions.
(a) $g(x):=\sqrt[3]{x^{2}}-\frac{1}{x}, x \neq 0$.

Solution. We have $g^{\prime}(x)=\frac{2}{3} x^{2 / 3-1}-(-1) x^{-1-1}=\frac{2}{3 \sqrt[3]{x}}+\frac{1}{x^{2}}$.
(b) $h(x):=\frac{1-x^{2}}{1+x^{2}}, x \in \mathbb{R}$.

Solution. By the quotient rule we have

$$
h^{\prime}(x)=\frac{\left(1-x^{2}\right)^{\prime}\left(1+x^{2}\right)-\left(1-x^{2}\right)\left(1+x^{2}\right)^{\prime}}{\left(1+x^{2}\right)^{2}}=\frac{-4 x}{\left(1+x^{2}\right)^{2}} .
$$

(c) $u(x):=\ln \left(x+\sqrt{a^{2}+x^{2}}\right), x \in \mathbb{R}$.

Solution. By the chain rule we have

$$
u^{\prime}(x)=\frac{1+\left(\sqrt{a^{2}+x^{2}}\right)^{\prime}}{x+\sqrt{a^{2}+x^{2}}}=\frac{1+\frac{x}{\sqrt{a^{2}+x^{2}}}}{x+\sqrt{a^{2}+x^{2}}}=\frac{1}{\sqrt{a^{2}+x^{2}}} .
$$

(d) $v(x):=x^{x}, x>0$.

Solution. We have $v(x)=e^{x \ln x}$. Hence, by the chain rule we have

$$
v^{\prime}(x)=e^{x \ln x}(x \ln x)^{\prime}=x^{x}(1+\ln x) .
$$

3. Let f be a real-valued function on an open interval I, and let c be a point in I. Prove the following statements.
(a) If f is differentiable at c, then $\lim _{n \rightarrow \infty} n\left[f\left(c+\frac{1}{n}\right)-f(c)\right]=f^{\prime}(c)$.

Proof. Since f is differentiable at c, we have

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=f^{\prime}(c) .
$$

Let $x_{n}:=1 / n$ for $n \in \mathbb{N}$. Then $\lim _{n \rightarrow \infty} x_{n}=0$. It follows that

$$
\lim _{n \rightarrow \infty} n\left[f\left(c+\frac{1}{n}\right)-f(c)\right]=\lim _{x_{n} \rightarrow 0} \frac{f\left(c+x_{n}\right)-f(c)}{x_{n}}=f^{\prime}(c) .
$$

(b) If f is differentiable at c, then

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-f(c-h)}{2 h}=f^{\prime}(c) .
$$

Proof. The desired relation follows from

$$
\frac{f(c+h)-f(c-h)}{2 h}=\frac{1}{2} \frac{f(c+h)-f(c)}{h}+\frac{1}{2} \frac{f(c)-f(c-h)}{h}
$$

and

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=f^{\prime}(c) \quad \text { and } \quad \lim _{h \rightarrow 0} \frac{f(c)-f(c-h)}{h}=f^{\prime}(c) .
$$

4. Let $f(x):=x \ln \left(1+\frac{1}{x}\right), 0<x<\infty$.
(a) Compute $\lim _{x \rightarrow \infty} f(x)$.

Proof. Since $\lim _{x \rightarrow \infty}(1+1 / x)^{x}=\lim _{y \rightarrow 0}(1+y)^{1 / y}=e$, we have

$$
\lim _{x \rightarrow \infty} x \ln \left(1+\frac{1}{x}\right)=\lim _{x \rightarrow \infty} \ln \left(1+\frac{1}{x}\right)^{x}=\ln e=1
$$

(b) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ for $0<x<\infty$.

Proof. For $x>0$, we have

$$
f^{\prime}(x)=\ln \left(1+\frac{1}{x}\right)+x \frac{1}{1+\frac{1}{x}}\left(-\frac{1}{x^{2}}\right)=\ln \left(1+\frac{1}{x}\right)-\frac{1}{x+1}
$$

and

$$
f^{\prime \prime}(x)=-\frac{1}{x(1+x)}+\frac{1}{(x+1)^{2}}=-\frac{1}{x(x+1)^{2}} .
$$

(c) Prove that f^{\prime} is strictly decreasing on $(0, \infty)$ and f is strictly increasing on $(0, \infty)$. Proof. Since $f^{\prime \prime}(x)<0$ for $0<x<\infty$, the function f^{\prime} is strictly decreasing on $(0, \infty)$. But $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$. Therefore, $f^{\prime}(x)>0$ for all $x>0$. This shows that f is strictly increasing on $(0, \infty)$.
5. Let f be the function on \mathbb{R} given by

$$
f(x):= \begin{cases}e^{-1 / x} & \text { for } x \in(0, \infty) \\ 0 & \text { for } x \in(-\infty, 0]\end{cases}
$$

(a) Compute $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ for $x>0$.

Solution. For $x>0$ we have

$$
f^{\prime}(x)=\frac{1}{x^{2}} e^{-1 / x} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{-2 x+1}{x^{4}} e^{-1 / x} .
$$

(b) Show that f is differentiable at 0 and find $f^{\prime}(0)$.

Proof. We have

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=0 \quad \text { and } \quad \lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{e^{-1 / x}}{x}=0
$$

Hence, f is differentiable at 0 and $f^{\prime}(0)=0$.
(c) Show that f^{\prime} is differentiable at 0 and find $f^{\prime \prime}(0)$.

Proof. We have

$$
\lim _{x \rightarrow 0^{-}} \frac{f^{\prime}(x)-f^{\prime}(0)}{x-0}=0 \quad \text { and } \quad \lim _{x \rightarrow 0^{+}} \frac{f^{\prime}(x)-f^{\prime}(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{e^{-1 / x}}{x^{3}}=0
$$

Hence, f^{\prime} is differentiable at 0 and $f^{\prime \prime}(0)=0$.
Let k be a fixed positive integer. In order to find $\lim _{x \rightarrow 0^{+}}\left(e^{-1 / x} / x^{k}\right)$, we make change of variables: $y:=1 / x$. Then $\lim _{x \rightarrow 0^{+}} y=+\infty$. Hence,

$$
\lim _{x \rightarrow 0^{+}} \frac{e^{-1 / x}}{x^{k}}=\lim _{y \rightarrow \infty} \frac{e^{-y}}{(1 / y)^{k}}=\lim _{y \rightarrow \infty} \frac{y^{k}}{e^{y}}=0 .
$$

