MATH 314 Assignment #8

1. For each of the following functions, determine the interval(s) where the function is

increasing or decreasing, and find all maxima and minima.

(a) f(z) =4z — 2% z € R.

Solution. We have f'(z) = 4(1 — 23), x € R. Clearly, f/(z) >0 for z < 1, f'(z) =0
for = 1, and f’(x) < 0 for x > 1. Hence, f is strictly increasing on the interval
(—o0, 1] and strictly decreasing on the interval [1,00). Moreover, f(1) = 3 is the
(absolute) maximum of f.

(b) g(z) == 125, z € R,

Solution. We have

gy 2e(142%) —2*(2z) 2z
g'(z) = (1 +22)2 422 x € IR.

Clearly, ¢'(x) < 0 for z < 0, ¢'(z) = 0 for = 0, and ¢'(x) > 0 for > 0. Hence g is
strictly decreasing on (—o0, 0] and strictly increasing on [0, 00). Moreover, g(0) = 0 is
the (absolute) minimum of g.

(c) u(z):=x—x/2, 2 >0.

Solution. We have v'(x) = 1/(2y/x) — 1/2, x > 0. Clearly, v/(z) > 0 for 0 < z < 1,
uw'(z) =0 for x = 1, and v/(z) < 0 for z > 1. Hence, u is strictly increasing on the
interval (0,1] and strictly decreasing on the interval [1,00). Moreover, u(1) = 1/2 is
the (absolute) maximum of u.

(d) v(x) := 7y € R

Solution. For z < 0 we have v(x) = /(1 — z) and v'(z) = 1/(1 — z)%. For z > 0 we
have v(z) = x/(1 + ) and v'(z) = 1/(1 + z)%. For x = 0 we have

v(h) —v(0) 1

"(0) = li =1 =1.
v (0) hs0 h o0 1+ ||
It follows that
V() = ———= >0 forall z¢€ (—o0,00).

Thus v is strictly increasing on (—oo,00). It has no maximum or minimum.

2. Establish the following inequalities.
(a) For 0 <t < 1, prove that z* < tx + (1 —t) for all z > 0.
Proof. Let g(x) := o' — [tz + (1 — t)] for x > 0. Then ¢'(z) = tz'~! —t = t[z!~1 — 1]
for z > 0. Since t —1 < 0, we have 2! > 1 for 0 < z < 1 and 2!~ ! < 1 for z > 1.
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Hence ¢’(z) > 0 for 0 < x < 1 and ¢’(z) < 0 for x > 1. Thus, ¢ is increasing on (0, 1]
and decreasing on [1,00). Consequently, g(z) < g(1) = 0 for all z > 0. This shows
that x! <tz + (1 —t) for all z > 0.

(b) Prove that a'b'™t <ta+ (1 —t)bfora>0,b>0,and 0 <t < 1.

Proof. The inequality is obvious if a = 0 or b = 0. Suppose that a > 0 and b > 0.
Then the inequality holds if and only if

atbbl—t < ta + (; —t)b7 ie., (%)t < t(%) + (1 —1).

Choosing z = a/b in the inequality in part (a), we see that the above inequality is

valid.

. Let g be the function given by ¢g(z) :=In[(1 + z)/(1 — z)] for —1 <z < 1.
(a) Find the Taylor series of g about 0.
Solution. Note that g(x) = In(1 + x) — In(1 — x). We have

n_

n(1 + ) Z ze(—1,1).

Substituting —x for x into the above equation, we obtain

o0 — oo _1
1 _ TL n — _ n _ .
x) Z x —z", z€ (—1,1)
n=1 n=1
It follows that
o n—l
g(x) =In(1+2z) —In(1 — x) Z ", z e (—1,1).

If n = 2k is an even number, then 1 + (—1)"~! = 0. If n = 2k — 1 is an odd number,
then 1+ (—1)"~! = 2. Hence

= 2
:];Qk—

x e (—1,1).

(b) Find the interval of convergence of the power series in (a).

Solution. The radius of convergence of the above power series is 1. When x = 1 we

have
o0 o0

~ 9
122%-1'
k=1

k=1



We observe that 2/(2k — 1) > 1/k for all k € IN. Since the harmonic series > ;- 1/k
diverges, the series >~ % diverges, by the comparison test. Similarly, when
x = —1, the series > p- | 5252?71 = -3 2 diverges. This shows that the
interval of convergence of the series - ; 5521 is (—1,1).

(c) Use the power series in (a) to evaluate In2 = ¢(1/3) accurate to four decimal

places.

Solution. We have

k=1
For a positive integer n, we use s, to denote the nth partial sum of the above seris.

A choice of n = 4 gives

o0 ) 1\ 2k—1 2 1\ 2k—1 2 /7119 1
0<In2— sy = (-) <z (—) :—(—) . £0.00002.
smeT ;zk—1 3 —9;_53 o\3) 1-1/9

Thus we obtain

1y 2/1\3  2/1\5  2/1\7
2 =2(3) 4 5(5) +5(5) +7(5) ~ooms
n2xs=2(3)+3(3) +:(3) +7(3) ~069313

This approximation is accurate to four decimal places.

. Let f be the function on IR defined by

flz) = {x2sin% for z € IR\ {0},
0 for z = 0.

(a) Find f’(x) for for x € R\ {0}.

Solution. For x # 0 we have

1 1 1 1
/ _ O 2 () = o -
f(:U)—stmx-i-:c COSx( x2> 2:15811&3j cos —.
(b) Prove that f is differentiable at 0 and that f’(0) = 0.
Solution. For h # 0 we have
— 2 sin(1 1
f((H—h})L f(0) _h SII;L( /h) :hsing.

Note that |sin(1/h)| <1 for all h € IR\ {0}. It follows that |hsin(1/h)| < |h|. By the

squeeze theorem for limits we obtain

lim FO+h) = JO) _ hmhsml =0.
h—0 h h—0 h




Therefore, f is differentiable at 0 and f’(0) = 0.
(c) Show that f’ is not continuous at 0.

Proof. Choose x,, := 1/(2n7) for n = 1,2,.... Then lim, o x, = 0. On the other
hand, by part (a) we have

2
f(z,) = =——sin(2n7) — cos(2nm) = -1 Vn € IN.
2nm
Hence lim,,_,o f'(z,) = —1 # f’(0). This shows that f’ is not continuous at 0.
. Let u(z) := arctanz and v(z) := 1/(1 + 2?) for x € (—o0, 0).
(a) Find the Taylor series of v about 0 and its interval of convergence.

Solution. We have

1 1 o0 oo

U(I) - 14 22 - 1— (_xz) = Z(_I2)n = Z(—l)nxgn.

The interval of convergence of the above power series is (—1,1).
(b) Find the Taylor series of u about 0 and its interval of convergence.

Solution. Since v’ = v and u(0) = 0, we have

o (-D)"
u(x) = arctanx = Z ~ L gt

2n+1
n=0
At x = 1 the series - -
Z (=" opy1 Z (="
€ — = 7
= 2n+1 o 2n+1

is an alternating series. Note that lim,, o, 1/(2n+1) =0and 1/(2n+1) > 1/(2n+3)

for all n € IN. By the alternating series test, ZZO:O (2;2: converges. For the same
reason, at © = —1 the series » (2;2: (—1)?"*! converges. Therefore, the interval

of convergence of the above power series is [—1, 1].

(¢c) Compute v(®(0) and v(7(0).

Solution. By the power series expansion of v we have
6! 7!

It follows that v(%)(0) = —720 and v(7)(0) = 0.

(d) Compute u(®(0) and u(7(0).

= (-1)° =0.

Solution. By the power series expansion of u we have
ul®(0) u(0) _ (-1)?
o 0 oA =T
It follows that u(®)(0) = 0 and «(7 (0) = —720.
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