## MATH 314 Assignment \#8

1. For each of the following functions, determine the interval(s) where the function is increasing or decreasing, and find all maxima and minima.
(a) $f(x):=4 x-x^{4}, x \in \mathbb{R}$.

Solution. We have $f^{\prime}(x)=4\left(1-x^{3}\right), x \in \mathbb{R}$. Clearly, $f^{\prime}(x)>0$ for $x<1, f^{\prime}(x)=0$ for $x=1$, and $f^{\prime}(x)<0$ for $x>1$. Hence, $f$ is strictly increasing on the interval $(-\infty, 1]$ and strictly decreasing on the interval $[1, \infty)$. Moreover, $f(1)=3$ is the (absolute) maximum of $f$.
(b) $g(x):=\frac{x^{2}}{1+x^{2}}, x \in \mathbb{R}$.

Solution. We have

$$
g^{\prime}(x)=\frac{2 x\left(1+x^{2}\right)-x^{2}(2 x)}{\left(1+x^{2}\right)^{2}}=\frac{2 x}{\left(1+x^{2}\right)^{2}}, \quad x \in \mathbb{R}
$$

Clearly, $g^{\prime}(x)<0$ for $x<0, g^{\prime}(x)=0$ for $x=0$, and $g^{\prime}(x)>0$ for $x>0$. Hence $g$ is strictly decreasing on $(-\infty, 0]$ and strictly increasing on $[0, \infty)$. Moreover, $g(0)=0$ is the (absolute) minimum of $g$.
(c) $u(x):=\sqrt{x}-x / 2, x \geq 0$.

Solution. We have $u^{\prime}(x)=1 /(2 \sqrt{x})-1 / 2, x>0$. Clearly, $u^{\prime}(x)>0$ for $0<x<1$, $u^{\prime}(x)=0$ for $x=1$, and $u^{\prime}(x)<0$ for $x>1$. Hence, $u$ is strictly increasing on the interval $(0,1]$ and strictly decreasing on the interval $[1, \infty)$. Moreover, $u(1)=1 / 2$ is the (absolute) maximum of $u$.
(d) $v(x):=\frac{x}{1+|x|}, x \in \mathbb{R}$.

Solution. For $x<0$ we have $v(x)=x /(1-x)$ and $v^{\prime}(x)=1 /(1-x)^{2}$. For $x>0$ we have $v(x)=x /(1+x)$ and $v^{\prime}(x)=1 /(1+x)^{2}$. For $x=0$ we have

$$
v^{\prime}(0)=\lim _{h \rightarrow 0} \frac{v(h)-v(0)}{h}=\lim _{h \rightarrow 0} \frac{1}{1+|h|}=1 .
$$

It follows that

$$
v^{\prime}(x)=\frac{1}{(1+|x|)^{2}}>0 \quad \text { for all } x \in(-\infty, \infty)
$$

Thus $v$ is strictly increasing on $(-\infty, \infty)$. It has no maximum or minimum.
2. Establish the following inequalities.
(a) For $0<t<1$, prove that $x^{t} \leq t x+(1-t)$ for all $x>0$.

Proof. Let $g(x):=x^{t}-[t x+(1-t)]$ for $x>0$. Then $g^{\prime}(x)=t x^{t-1}-t=t\left[x^{t-1}-1\right]$ for $x>0$. Since $t-1<0$, we have $x^{t-1}>1$ for $0<x<1$ and $x^{t-1}<1$ for $x>1$.

Hence $g^{\prime}(x)>0$ for $0<x<1$ and $g^{\prime}(x)<0$ for $x>1$. Thus, $g$ is increasing on $(0,1$ ] and decreasing on $[1, \infty)$. Consequently, $g(x) \leq g(1)=0$ for all $x>0$. This shows that $x^{t} \leq t x+(1-t)$ for all $x>0$.
(b) Prove that $a^{t} b^{1-t} \leq t a+(1-t) b$ for $a \geq 0, b \geq 0$, and $0<t<1$.

Proof. The inequality is obvious if $a=0$ or $b=0$. Suppose that $a>0$ and $b>0$. Then the inequality holds if and only if

$$
\frac{a^{t} b^{1-t}}{b} \leq \frac{t a+(1-t) b}{b}, \quad \text { i.e., } \quad\left(\frac{a}{b}\right)^{t} \leq t\left(\frac{a}{b}\right)+(1-t) .
$$

Choosing $x=a / b$ in the inequality in part (a), we see that the above inequality is valid.
3. Let $g$ be the function given by $g(x):=\ln [(1+x) /(1-x)]$ for $-1<x<1$.
(a) Find the Taylor series of $g$ about 0 .

Solution. Note that $g(x)=\ln (1+x)-\ln (1-x)$. We have

$$
\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}, \quad x \in(-1,1)
$$

Substituting $-x$ for $x$ into the above equation, we obtain

$$
\ln (1-x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}(-1)^{n} x^{n}=\sum_{n=1}^{\infty} \frac{-1}{n} x^{n}, \quad x \in(-1,1) .
$$

It follows that

$$
g(x)=\ln (1+x)-\ln (1-x)=\sum_{n=1}^{\infty} \frac{1+(-1)^{n-1}}{n} x^{n}, \quad x \in(-1,1) .
$$

If $n=2 k$ is an even number, then $1+(-1)^{n-1}=0$. If $n=2 k-1$ is an odd number, then $1+(-1)^{n-1}=2$. Hence

$$
g(x)=\sum_{k=1}^{\infty} \frac{2}{2 k-1} x^{2 k-1}, \quad x \in(-1,1)
$$

(b) Find the interval of convergence of the power series in (a).

Solution. The radius of convergence of the above power series is 1 . When $x=1$ we have

$$
\sum_{k=1}^{\infty} \frac{2}{2 k-1} x^{2 k-1}=\sum_{k=1}^{\infty} \frac{2}{2 k-1}
$$

We observe that $2 /(2 k-1) \geq 1 / k$ for all $k \in \mathbb{N}$. Since the harmonic series $\sum_{k=1}^{\infty} 1 / k$ diverges, the series $\sum_{k=1}^{\infty} \frac{2}{2 k-1}$ diverges, by the comparison test. Similarly, when $x=-1$, the series $\sum_{k=1}^{\infty} \frac{2}{2 k-1} x^{2 k-1}=-\sum_{k=1}^{\infty} \frac{2}{2 k-1}$ diverges. This shows that the interval of convergence of the series $\sum_{k=1}^{\infty} \frac{2}{2 k-1} x^{2 k-1}$ is $(-1,1)$.
(c) Use the power series in (a) to evaluate $\ln 2=g(1 / 3)$ accurate to four decimal places.
Solution. We have

$$
\ln 2=g(1 / 3)=\sum_{k=1}^{\infty} \frac{2}{2 k-1}\left(\frac{1}{3}\right)^{2 k-1} .
$$

For a positive integer $n$, we use $s_{n}$ to denote the $n$th partial sum of the above seris. A choice of $n=4$ gives

$$
0<\ln 2-s_{4}=\sum_{k=5}^{\infty} \frac{2}{2 k-1}\left(\frac{1}{3}\right)^{2 k-1} \leq \frac{2}{9} \sum_{k=5}^{\infty}\left(\frac{1}{3}\right)^{2 k-1}=\frac{2}{9}\left(\frac{1}{3}\right)^{9} \frac{1}{1-1 / 9}<0.00002 .
$$

Thus we obtain

$$
\ln 2 \approx s_{4}=2\left(\frac{1}{3}\right)+\frac{2}{3}\left(\frac{1}{3}\right)^{3}+\frac{2}{5}\left(\frac{1}{3}\right)^{5}+\frac{2}{7}\left(\frac{1}{3}\right)^{7} \approx 0.69313
$$

This approximation is accurate to four decimal places.
4. Let $f$ be the function on $\mathbb{R}$ defined by

$$
f(x):= \begin{cases}x^{2} \sin \frac{1}{x} & \text { for } x \in \mathbb{R} \backslash\{0\}, \\ 0 & \text { for } x=0\end{cases}
$$

(a) Find $f^{\prime}(x)$ for for $x \in \mathbb{R} \backslash\{0\}$.

Solution. For $x \neq 0$ we have

$$
f^{\prime}(x)=2 x \sin \frac{1}{x}+x^{2} \cos \frac{1}{x}\left(-\frac{1}{x^{2}}\right)=2 x \sin \frac{1}{x}-\cos \frac{1}{x} .
$$

(b) Prove that $f$ is differentiable at 0 and that $f^{\prime}(0)=0$.

Solution. For $h \neq 0$ we have

$$
\frac{f(0+h)-f(0)}{h}=\frac{h^{2} \sin (1 / h)}{h}=h \sin \frac{1}{h} .
$$

Note that $|\sin (1 / h)| \leq 1$ for all $h \in \mathbb{R} \backslash\{0\}$. It follows that $|h \sin (1 / h)| \leq|h|$. By the squeeze theorem for limits we obtain

$$
\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} h \sin \frac{1}{h}=0 .
$$

Therefore, $f$ is differentiable at 0 and $f^{\prime}(0)=0$.
(c) Show that $f^{\prime}$ is not continuous at 0 .

Proof. Choose $x_{n}:=1 /(2 n \pi)$ for $n=1,2, \ldots$. Then $\lim _{n \rightarrow \infty} x_{n}=0$. On the other hand, by part (a) we have

$$
f^{\prime}\left(x_{n}\right)=\frac{2}{2 n \pi} \sin (2 n \pi)-\cos (2 n \pi)=-1 \quad \forall n \in \mathbb{N} .
$$

Hence $\lim _{n \rightarrow \infty} f^{\prime}\left(x_{n}\right)=-1 \neq f^{\prime}(0)$. This shows that $f^{\prime}$ is not continuous at 0 .
5. Let $u(x):=\arctan x$ and $v(x):=1 /\left(1+x^{2}\right)$ for $x \in(-\infty, \infty)$.
(a) Find the Taylor series of $v$ about 0 and its interval of convergence.

Solution. We have

$$
v(x)=\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} .
$$

The interval of convergence of the above power series is $(-1,1)$.
(b) Find the Taylor series of $u$ about 0 and its interval of convergence.

Solution. Since $u^{\prime}=v$ and $u(0)=0$, we have

$$
u(x)=\arctan x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}
$$

At $x=1$ the series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}
$$

is an alternating series. Note that $\lim _{n \rightarrow \infty} 1 /(2 n+1)=0$ and $1 /(2 n+1)>1 /(2 n+3)$ for all $n \in \mathbb{N}$. By the alternating series test, $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}$ converges. For the same reason, at $x=-1$ the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}(-1)^{2 n+1}$ converges. Therefore, the interval of convergence of the above power series is $[-1,1]$.
(c) Compute $v^{(6)}(0)$ and $v^{(7)}(0)$.

Solution. By the power series expansion of $v$ we have

$$
\frac{v^{(6)}(0)}{6!}=(-1)^{3} \quad \text { and } \quad \frac{v^{(7)}(0)}{7!}=0
$$

It follows that $v^{(6)}(0)=-720$ and $v^{(7)}(0)=0$.
(d) Compute $u^{(6)}(0)$ and $u^{(7)}(0)$.

Solution. By the power series expansion of $u$ we have

$$
\frac{u^{(6)}(0)}{6!}=0 \quad \text { and } \quad \frac{u^{(7)}(0)}{7!}=\frac{(-1)^{3}}{7} .
$$

It follows that $u^{(6)}(0)=0$ and $u^{(7)}(0)=-720$.

