
MATH 314 Assignment #8

1. For each of the following functions, determine the interval(s) where the function is

increasing or decreasing, and find all maxima and minima.

(a) f(x) := 4x− x4, x ∈ IR.

Solution. We have f ′(x) = 4(1− x3), x ∈ IR. Clearly, f ′(x) > 0 for x < 1, f ′(x) = 0

for x = 1, and f ′(x) < 0 for x > 1. Hence, f is strictly increasing on the interval

(−∞, 1] and strictly decreasing on the interval [1,∞). Moreover, f(1) = 3 is the

(absolute) maximum of f .

(b) g(x) := x2

1+x2 , x ∈ IR.

Solution. We have

g′(x) =
2x(1 + x2)− x2(2x)

(1 + x2)2
=

2x

(1 + x2)2
, x ∈ IR.

Clearly, g′(x) < 0 for x < 0, g′(x) = 0 for x = 0, and g′(x) > 0 for x > 0. Hence g is

strictly decreasing on (−∞, 0] and strictly increasing on [0,∞). Moreover, g(0) = 0 is

the (absolute) minimum of g.

(c) u(x) :=
√
x− x/2, x ≥ 0.

Solution. We have u′(x) = 1/(2
√
x) − 1/2, x > 0. Clearly, u′(x) > 0 for 0 < x < 1,

u′(x) = 0 for x = 1, and u′(x) < 0 for x > 1. Hence, u is strictly increasing on the

interval (0, 1] and strictly decreasing on the interval [1,∞). Moreover, u(1) = 1/2 is

the (absolute) maximum of u.

(d) v(x) := x
1+|x| , x ∈ IR.

Solution. For x < 0 we have v(x) = x/(1− x) and v′(x) = 1/(1− x)2. For x > 0 we

have v(x) = x/(1 + x) and v′(x) = 1/(1 + x)2. For x = 0 we have

v′(0) = lim
h→0

v(h)− v(0)

h
= lim

h→0

1

1 + |h|
= 1.

It follows that

v′(x) =
1

(1 + |x|)2
> 0 for all x ∈ (−∞,∞).

Thus v is strictly increasing on (−∞,∞). It has no maximum or minimum.

2. Establish the following inequalities.

(a) For 0 < t < 1, prove that xt ≤ tx+ (1− t) for all x > 0.

Proof . Let g(x) := xt − [tx+ (1− t)] for x > 0. Then g′(x) = txt−1 − t = t[xt−1 − 1]

for x > 0. Since t − 1 < 0, we have xt−1 > 1 for 0 < x < 1 and xt−1 < 1 for x > 1.
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Hence g′(x) > 0 for 0 < x < 1 and g′(x) < 0 for x > 1. Thus, g is increasing on (0, 1]

and decreasing on [1,∞). Consequently, g(x) ≤ g(1) = 0 for all x > 0. This shows

that xt ≤ tx+ (1− t) for all x > 0.

(b) Prove that atb1−t ≤ ta+ (1− t)b for a ≥ 0, b ≥ 0, and 0 < t < 1.

Proof . The inequality is obvious if a = 0 or b = 0. Suppose that a > 0 and b > 0.

Then the inequality holds if and only if

atb1−t

b
≤ ta+ (1− t)b

b
, i.e.,

(a
b

)t

≤ t
(a
b

)
+ (1− t).

Choosing x = a/b in the inequality in part (a), we see that the above inequality is

valid.

3. Let g be the function given by g(x) := ln[(1 + x)/(1− x)] for −1 < x < 1.

(a) Find the Taylor series of g about 0.

Solution. Note that g(x) = ln(1 + x)− ln(1− x). We have

ln(1 + x) =

∞∑
n=1

(−1)n−1

n
xn, x ∈ (−1, 1).

Substituting −x for x into the above equation, we obtain

ln(1− x) =
∞∑

n=1

(−1)n−1

n
(−1)nxn =

∞∑
n=1

−1

n
xn, x ∈ (−1, 1).

It follows that

g(x) = ln(1 + x)− ln(1− x) =
∞∑

n=1

1 + (−1)n−1

n
xn, x ∈ (−1, 1).

If n = 2k is an even number, then 1 + (−1)n−1 = 0. If n = 2k − 1 is an odd number,

then 1 + (−1)n−1 = 2. Hence

g(x) =
∞∑
k=1

2

2k − 1
x2k−1, x ∈ (−1, 1).

(b) Find the interval of convergence of the power series in (a).

Solution. The radius of convergence of the above power series is 1. When x = 1 we

have
∞∑
k=1

2

2k − 1
x2k−1 =

∞∑
k=1

2

2k − 1
.

2



We observe that 2/(2k − 1) ≥ 1/k for all k ∈ IN. Since the harmonic series
∑∞

k=1 1/k

diverges, the series
∑∞

k=1
2

2k−1 diverges, by the comparison test. Similarly, when

x = −1, the series
∑∞

k=1
2

2k−1x
2k−1 = −

∑∞
k=1

2
2k−1 diverges. This shows that the

interval of convergence of the series
∑∞

k=1
2

2k−1x
2k−1 is (−1, 1).

(c) Use the power series in (a) to evaluate ln 2 = g(1/3) accurate to four decimal

places.

Solution. We have

ln 2 = g(1/3) =
∞∑
k=1

2

2k − 1

(1
3

)2k−1

.

For a positive integer n, we use sn to denote the nth partial sum of the above seris.

A choice of n = 4 gives

0 < ln 2− s4 =

∞∑
k=5

2

2k − 1

(1
3

)2k−1

≤ 2

9

∞∑
k=5

(1
3

)2k−1

=
2

9

(1
3

)9 1

1− 1/9
< 0.00002.

Thus we obtain

ln 2 ≈ s4 = 2
(1
3

)
+

2

3

(1
3

)3

+
2

5

(1
3

)5

+
2

7

(1
3

)7

≈ 0.69313.

This approximation is accurate to four decimal places.

4. Let f be the function on IR defined by

f(x) :=

{
x2 sin 1

x for x ∈ IR \ {0},
0 for x = 0.

(a) Find f ′(x) for for x ∈ IR \ {0}.

Solution. For x ̸= 0 we have

f ′(x) = 2x sin
1

x
+ x2 cos

1

x

(
− 1

x2

)
= 2x sin

1

x
− cos

1

x
.

(b) Prove that f is differentiable at 0 and that f ′(0) = 0.

Solution. For h ̸= 0 we have

f(0 + h)− f(0)

h
=

h2 sin(1/h)

h
= h sin

1

h
.

Note that | sin(1/h)| ≤ 1 for all h ∈ IR \ {0}. It follows that |h sin(1/h)| ≤ |h|. By the

squeeze theorem for limits we obtain

lim
h→0

f(0 + h)− f(0)

h
= lim

h→0
h sin

1

h
= 0.
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Therefore, f is differentiable at 0 and f ′(0) = 0.

(c) Show that f ′ is not continuous at 0.

Proof . Choose xn := 1/(2nπ) for n = 1, 2, . . .. Then limn→∞ xn = 0. On the other

hand, by part (a) we have

f ′(xn) =
2

2nπ
sin(2nπ)− cos(2nπ) = −1 ∀n ∈ IN.

Hence limn→∞ f ′(xn) = −1 ̸= f ′(0). This shows that f ′ is not continuous at 0.

5. Let u(x) := arctanx and v(x) := 1/(1 + x2) for x ∈ (−∞,∞).

(a) Find the Taylor series of v about 0 and its interval of convergence.

Solution. We have

v(x) =
1

1 + x2
=

1

1− (−x2)
=

∞∑
n=0

(−x2)n =

∞∑
n=0

(−1)nx2n.

The interval of convergence of the above power series is (−1, 1).

(b) Find the Taylor series of u about 0 and its interval of convergence.

Solution. Since u′ = v and u(0) = 0, we have

u(x) = arctanx =

∞∑
n=0

(−1)n

2n+ 1
x2n+1.

At x = 1 the series
∞∑

n=0

(−1)n

2n+ 1
x2n+1 =

∞∑
n=0

(−1)n

2n+ 1

is an alternating series. Note that limn→∞ 1/(2n+1) = 0 and 1/(2n+1) > 1/(2n+3)

for all n ∈ IN. By the alternating series test,
∑∞

n=0
(−1)n

2n+1 converges. For the same

reason, at x = −1 the series
∑∞

n=0
(−1)n

2n+1 (−1)2n+1 converges. Therefore, the interval

of convergence of the above power series is [−1, 1].

(c) Compute v(6)(0) and v(7)(0).

Solution. By the power series expansion of v we have

v(6)(0)

6!
= (−1)3 and

v(7)(0)

7!
= 0.

It follows that v(6)(0) = −720 and v(7)(0) = 0.

(d) Compute u(6)(0) and u(7)(0).

Solution. By the power series expansion of u we have

u(6)(0)

6!
= 0 and

u(7)(0)

7!
=

(−1)3

7
.

It follows that u(6)(0) = 0 and u(7)(0) = −720.
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