
MATH 314 Assignment #9

1. Let f be an increasing function on [a, b] with −∞ < a < b < ∞.

(a) Let P = {t0, t1, . . . , tn} be a partition of [a, b]. Prove

U(f, P )− L(f, P ) ≤
n∑

i=1

[f(ti)− f(ti−1)](ti − ti−1).

Proof . Let mi := inf{f(x) : ti−1 ≤ x ≤ ti} and Mi := sup{f(x) : ti−1 ≤ x ≤ ti} for

i = 1, . . . , n. Since f is an increasing function on [a, b], we have mi = f(ti−1) and

Mi = f(ti). It follows that

U(f, P )−L(f, P ) =
n∑

i=1

Mi(ti−ti−1)−
n∑

i=1

mi(ti−ti−1) =
n∑

i=1

[f(ti)−f(ti−1)](ti−ti−1).

(b) Prove that U(f, P )− L(f, P ) ≤ [f(b)− f(a)]δ whenever ∥P∥ < δ.

Proof . Suppose ∥P∥ < δ. Then ti − ti−1 ≤ δ for i = 1, . . . , n. Since f(ti) ≥ f(ti−1),

we have [f(ti)− f(ti−1)](ti − ti−1) ≤ [f(ti)− f(ti−1)]δ. Consequently,

U(f, P )− L(f, P ) =
n∑

i=1

[f(ti)− f(ti−1)](ti − ti−1)

≤
n∑

i=1

[f(ti)− f(ti−1)]δ = [f(b)− f(a)]δ.

(c) Prove that f is integrable on [a, b].

Proof . If f is a constant function, then f is integrable. Thus we suppose that f is a

non-constant increasing function on [a, b]. Given ε > 0, choose δ := ε/[f(b) − f(a)].

Let P = {t0, t1, . . . , tn} be a partition of [a, b] with ∥P∥ < δ. By part (a) we have

U(f, P )− L(f, P ) ≤ [f(b)− f(a)]∥P∥ < [f(b)− f(a)]δ = ε.

Therefore f is integrable on [a, b].

2. Let g be the function on [0, 1] defined by g(0) := 0 and

g(x) := 2−n for 2−n−1 < x ≤ 2−n, n = 0, 1, 2, . . . .

(a) Prove that g is integrable on [0, 1].
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Proof . By what has been proved in problem 1, it suffices to show that g is an increasing

function on [0, 1]. Suppose 0 ≤ x < y ≤ 1. If x = 0, then g(0) = 0 < g(y).

So we may assume x > 0. There exists a unique nonnegative integer n such that

2−n−1 < x ≤ 2−n. It follows that 2−n−1 < x < y. There exists a unique nonnegative

integer m such that 2−m−1 < y ≤ 2−m. Since y > 2−n−1, we must have m ≤ n. By

the definition of g we have

g(x) = 2−n ≤ 2−m = g(y).

This shows that g is an increasing function on [0, 1].

(b) Find
∫ 1

0
g(x) dx.

Solution. We have∫ 1

0

g(x) dx =

∫ 1/2n

0

g(x) dx+

∫ 1

1/2n
g(x) dx = tn + sn,

where tn :=
∫ 1/2n

0
g(x) dx and sn :=

∫ 1

1/2n
g(x) dx for n ∈ IN. Since 0 ≤ g(x) ≤ 1/2n

for x ∈ [0, 1/2n], we get

0 ≤ tn =

∫ 1/2n

0

g(x) dx ≤ 1

2n
1

2n
=

1

4n
.

It follows that limn→∞ tn = 0. Moreover,

sn =

∫ 1

1/2n
g(x) dx =

n−1∑
k=0

∫ 1/2k

1/2k+1

g(x) dx =

n−1∑
k=0

∫ 1/2k

1/2k+1

1

2k
dx.

It follows that

sn =
n−1∑
k=0

1

2k

(
1

2k
− 1

2k+1

)
=

n−1∑
k=0

1

2k
1

2k+1
=

n−1∑
k=0

1

22k+1
=

1

2

1− (1/4)n

1− 1/4
.

Since
∫ 1

0
g(x) dx = tn + sn for all n ∈ IN, we obtain∫ 1

0

g(x) dx = lim
n→∞

(tn + sn) = lim
n→∞

tn + lim
n→∞

sn =
1

2

1

1− 1/4
=

2

3
.

3. Let f be the function on IR defined as follows: f(x) := 0 for x < 0; f(x) := x for

0 ≤ x ≤ 1; f(x) := 2 for x > 1.

(a) Find an explicit expression of the function F (x) :=
∫ x

0
f(t) dt, x ∈ IR.
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Solution. For x < 0 we have

F (x) =

∫ x

0

f(t) dt = −
∫ 0

x

f(t) dt = 0.

For 0 ≤ x ≤ 1 we have

F (x) =

∫ x

0

f(t) dt =

∫ x

0

t dt =
x2

2
.

For x > 1 we have

F (x) =

∫ x

0

f(t) dt =

∫ 1

0

t dt+

∫ x

1

2 dt =
1

2
+ 2(x− 1) = 2x− 3

2
.

(b) Is F continuous on IR?

Answer . By the Fundamental Theorem of Calculus, F is continuous on IR. This also

can be seen from the explicit expression of F given in part (a).

(c) Where is F differentiable? Calculate F ′ at the points of differentiability.

Solution. For x < 0 we have F ′(x) = 0. For 0 < x < 1 we have F ′(x) = x. For x > 1

we have F ′(x) = 2. At x = 0 we have

lim
h→0−

F (0 + h)− F (0)

h
= 0 and lim

h→0+

F (0 + h)− F (0)

h
= lim

h→0+

h2/2

h
= 0.

Consequently, F is differentiable at 0 and F ′(0) = 0. At x = 1 we have

lim
h→0−

F (1 + h)− F (1)

h
= 1 and lim

h→0+

F (1 + h)− F (1)

h
= 2.

Consequently, F is not differentiable at 1. We conclude that F is differentiable on

IR \ {1}.

4. (a) Let G(x) :=
∫ x2

−x

√
1 + t2 dt, x ∈ IR. Find G′(x) for x ∈ IR.

Solution. We have

G(x) =

∫ x2

−x

√
1 + t2 dt =

∫ x2

0

√
1 + t2 dt−

∫ −x

0

√
1 + t2 dt.

By the Fundamental Theorem of Calculus and the chain rule, we obtain

G′(x) = 2x
√
1 + (x2)2 +

√
1 + (−x)2 = 2x

√
1 + x4 +

√
1 + x2, x ∈ IR.
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(b) Let H(x) :=
∫ x

0
xet

2

dt for x ∈ IR. Find H ′′(x) for x ∈ IR.

Solution. By the product rule and the Fundamental Theorem of Calculus, we obtain

H ′(x) =

∫ x

0

et
2

dt+ xex
2

.

It follows that

H ′′(x) = ex
2

+ ex
2

+ x(2x)ex
2

= 2ex
2

+ 2x2ex
2

, x ∈ IR.

5. Let

F (x) :=

∫ x+π

x

| cos t| dt, x ∈ IR.

(a) Find F ′(x) for x ∈ IR.

Solution. By the fundamental theorem of calculus we have

F ′(x) = | cos(x+ π)| − | cosx| = | − cosx| − | cosx| = 0, x ∈ IR.

(b) Find an explicit expression for F (x), x ∈ IR.

Solution. By part (a) we see that F is constant. Hence, for all x ∈ IR,

F (x) = F (−π/2) =

∫ π/2

−π/2

| cos t| dt =
∫ π/2

−π/2

cos t dt =
[
sin t

]π/2
−π/2

= 2.
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