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QUINCUNX FUNDAMENTAL REFINABLE FUNCTIONS
AND QUINCUNX BIORTHOGONAL WAVELETS

BIN HAN AND RONG-QING JIA

Abstract. We analyze the approximation and smoothness properties of quin-
cunx fundamental refinable functions. In particular, we provide a general way
for the construction of quincunx interpolatory refinement masks associated
with the quincunx lattice in R2. Their corresponding quincunx fundamental
refinable functions attain the optimal approximation order and smoothness
order. In addition, these examples are minimally supported with symmetry.
For two special families of such quincunx interpolatory masks, we prove that
their symbols are nonnegative. Finally, a general way of constructing quincunx
biorthogonal wavelets is presented. Several examples of quincunx interpolatory
masks and quincunx biorthogonal wavelets are explicitly computed.

1. Introduction

In this paper, we are interested in bivariate fundamental refinable functions
with quincunx dilation matrices. A function φ is said to be fundamental if φ is
continuous, φ(0) = 1 and φ(β) = 0 for all β ∈ Zs\{0}. An s× s integer matrix M
is called a dilation matrix if limn→∞M

−n = 0, i.e., all the eigenvalues of a dilation
matrix M are greater than one in modulus. In this paper, we are particularly
interested in the following two dilation matrices:

Q =
(

1 −1
1 1

)
and T =

(
1 1
1 −1

)
.(1.1)

A refinable function φ satisfies the following refinement equation

φ =
∑
β∈Zs

a(β)φ(M · −β)(1.2)

with a dilation matrix M , where a is a finitely supported sequence on Zs called
the (refinement) mask. When

∑
β∈Zs a(β) = | detM |, it is known that there exists

a unique compactly supported distributional solution, denoted by φMa and called
the normalized solution, to the refinement equation (1.2) subject to the condition
φ̂Ma (0) = 1.
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If a compactly supported function φ is fundamental and satisfies the refinement
equation (1.2) with a finitely supported refinement mask a and a dilation matrix
M , then it is necessary that

a(0) = 1 and a(β) = 0 ∀ β ∈MZs\{0}.(1.3)

A finitely supported sequence a on Zs is called an interpolatory (refinement) mask
if it satisfies the above condition (1.3) with a dilation matrix M and

∑
β∈Zs a(β) =

| detM |.
In order to solve the refinement equation (1.2), we start with an initial function

φ0 given by

φ0(x1, · · · , xs) =
s∏
j=1

χ(xj), (x1, · · · , xs) ∈ Rs,

where χ is the hat function defined by χ(x) := max{1 − |x|, 0}, x ∈ R. Then we
employ the iteration scheme Qnaφ0, n = 0, 1, 2, · · · , where Qa is the bounded linear
operator on Lp(Rs) (1 ≤ p ≤ ∞) given by

Qaf :=
∑
β∈Zs

a(β)f(M · − β), f ∈ Lp(Rs).

This iteration scheme is called a subdivision scheme associated with the mask a
and the dilation matrix M (see [1]). If the mask is an interpolatory mask, this
subdivision scheme is called an interpolatory subdivision scheme. We say that the
subdivision scheme associated with a mask a and a dilation matrix M converges in
the Lp norm if the sequence of functions Qnaφ0 converges to a function f ∈ Lp(Rs)
in the Lp norm, i.e., limn→∞ ‖Qnaφ0 − f‖p = 0. If this is the case, then Qaf = f
and f = φMa .

Let `(Zs) denote the linear space of all sequences on Zs and `0(Zs) denote the
subspace of all finitely supported sequences on Zs. The difference operator ∇i on
`0(Zs) is defined as ∇iλ = λ− λ(· − ei), λ ∈ `0(Zs), where ei is the i-th coordinate
unit vector in Rs. By δ we denote the Dirac sequence given by δ(0) = 1 and
δ(β) = 0 for all β ∈ Zs\{0}. For any mask a ∈ `0(Zs) and a general dilation matrix
M , it was demonstrated in [14] that the subdivision scheme associated with the
mask a and the dilation matrix M converges in the Lp norm if and only if

lim
n→∞

‖∇iSna,M δ‖1/np < m1/p ∀ i = 1, · · · , s,

where m := | detM | and the subdivision operator Sa,M is defined by

Sa,Mλ(α) :=
∑
β∈Zs

a(α−Mβ)λ(β), α ∈ Zs, λ ∈ `(Zs).(1.4)

Let a be an interpolatory refinement mask with a dilation matrix M . Then the
normalized solution φMa of the refinement equation (1.2) with the mask a and the
dilation matrix M is fundamental if and only if the subdivision scheme associated
with the mask a and the dilation matrix M converges in the L∞ norm.

Let Q and T be the matrices defined in (1.1). Then

QZ2 = TZ2 = {(β1, β2) ∈ Z2 : β1 + β2 is an even number }.
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The lattice QZ2 is called the quincunx lattice. Thus, we say that a sequence a on
Z2 is a quincunx interpolatory mask if

∑
β∈Z2 a(β) = 2 and

a(0) = 1 and a(β) = 0 ∀ β ∈ QZ2\{0}.(1.5)

Let a be a quincunx interpolatory mask. If the normalized solution φQa (or
φTa ) to the refinement equation (1.2) is fundamental, then it is called a quincunx
fundamental refinable function.

Interpolatory subdivision schemes play an important role in computer graphics
and wavelet analysis. See [9] for their applications to computer aided geometric
design, and see [4] for their applications to wavelet decompositions.

In the current literature for the univariate case, Deslauriers and Dubuc in [7] pro-
posed a general method to construct symmetric interpolatory subdivision schemes.
For the multivariate case, Dyn, Gregory and Levin [10] constructed the so-called
butterfly scheme which is a C1 bivariate interpolatory subdivision scheme, while
Deslauriers, Dubois and Dubuc [8] obtained several continuous bivariate refinable
and fundamental functions. Mongeau and Deslauriers [24] obtained several C1

bivariate refinable and fundamental functions. Using convolutions of box splines
with refinable distributions, Riemenschneider and Shen [25] constructed a family
of bivariate interpolatory subdivision schemes with symmetry. Han and Jia [15]
constructed a family of bivariate optimal interpolatory subdivision schemes with
many desired properties.

However, all the above constructions in the multivariate case have used the
dilation matrix 2I2 only. Owing to some special properties of the matrices Q and T ,
such as | detQ| = | detT | = 2, T 2 = 2I2 and Q4 = −4I2, it is desirable to consider
quincunx fundamental refinable functions and quincunx biorthogonal wavelets, i.e.,
biorthogonal wavelets with the dilation matrix Q or T . See Cohen and Daubechies
[4] for discussions on quincunx biorthogonal wavelets. Also, quincunx fundamental
refinable functions automatically provide a family of primal refinable functions from
which quincunx biorthogonal wavelets can be constructed. Quincunx biorthogonal
wavelets are useful in image processing [21] because of their special properties. For
biorthogonal wavelets, the reader is referred to [2, 3, 4, 5, 6, 12, 13, 16, 21, 22, 26, 27]
and references therein.

The main purpose of this paper is to investigate and construct quincunx inter-
polatory masks and quincunx biorthogonal wavelets with some desired properties.

The structure of this paper is as follows. In Section 2, we shall investigate
the optimal approximation order and smoothness order of quincunx fundamental
refinable functions with respect to their support. In Section 3, we shall propose
a family of quincunx interpolatory masks such that they are minimally supported
and have symmetry. Their associated quincunx fundamental refinable functions
have optimal approximation order and smoothness order. In particular, for two
special families of such quincunx interpolatory masks, we prove that their symbols
are nonnegative. In Section 4, several examples of quincunx interpolatory masks
are explicitly computed. Both the L2 and the L∞ smoothness described by the
critical exponents of their quincunx fundamental refinable functions are calculated.
Finally, in Section 5, we discuss how to construct quincunx biorthogonal wavelets
by using the coset by coset (CBC) algorithm proposed in [13] and [2]. Examples
are provided to illustrate the general theory.
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2. Approximation order and smoothness order

In this section we shall investigate the approximation and smoothness properties
of quincunx fundamental refinable functions.

For a compactly supported function φ in Lp(Rs) (1 ≤ p ≤ ∞), we define

S(φ) :=
{∑
α∈Zs

φ(· − α)λ(α) : λ ∈ `(Zs)
}
.

For h > 0, Sh is defined by Sh := {g(·/h) : g ∈ S(φ) }. For a positive integer
k, we say that S(φ) provides approximation order k if, for each sufficiently smooth
function f in Lp(Rs), there exists a positive constant C such that

inf
g∈Sh

‖f − g‖p ≤ Chk ∀ h > 0.

The concept of stability plays an important role in wavelet analysis. Let φ be a
compactly supported function in Lp(Rs) (1 ≤ p ≤ ∞). We say that the shifts of φ
are stable if there are two positive constants C1 and C2 such that

C1‖λ‖p ≤
∥∥∥∥∑
α∈Zs

λ(α)φ(· − α)
∥∥∥∥
p

≤ C2‖λ‖p ∀ λ ∈ `0(Zs).(2.1)

Let a be a sequence on Zs. For a positive integer k, we say that a satisfies the
sum rules of order k with a dilation matrix M if∑

β∈MZs
a(ε+ β)p(ε + β) =

∑
β∈MZs

a(β)p(β) ∀ ε ∈ Zs, p ∈ Πk−1,(2.2)

where Πk−1 denotes the set of all polynomials of (total) degree at most k−1. Note
that (2.2) depends only on the lattice MZs. If a mask a on Z2 satisfies (2.2) with
the quincunx lattice QZ2, then we say that a satisfies the sum rules of order k with
respect to the quincunx lattice.

Now suppose φ is the normalized solution of the refinement equation (1.2) with
a mask a and a dilation matrix M . It was proved by Jia in [17] that if the shifts
of φ are stable, then S(φ) provides approximation order k if and only if the mask
a satisfies the sum rules of order k. Note that a fundamental function has stable
shifts. Thus, in particular, if φ is a fundamental refinable function with a mask a
and a dilation matrix M , then S(φ) provides approximation order k if and only if
a satisfies the sum rules of order k with the dilation matrix M .

Deslauriers and Dubuc in [7] proposed a family of interpolatory masks br (r ∈ N)
with the dilation matrixM = (2). Their construction was restated in [15] as follows.

Theorem 2.1. Let the dilation matrix M = (2) and a ∈ `0(Z) be an interpolatory
refinement mask on Z satisfying the sum rules of order k. If a is supported on an
interval [1 − 2r, 2r − 1] for some r ∈ N, then k ≤ 2r. Moreover, there exists a
unique interpolatory refinement mask, denoted by br, such that it is supported on
[1− 2r, 2r − 1] and satisfies the sum rules of order 2r. In fact, an explicit formula
for br is

br(2j − 1) := (−1)j+1

∏r
k=1(2k − 1)2

22r−1(2j − 1) · (r − 1 + j)!(r − j)! , 1− r ≤ j ≤ r.

Now we have the following result for quincunx interpolatory masks.
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Theorem 2.2. Let a be a quincunx interpolatory mask supported on

{(β1, β2) ∈ Z2 : |β1|+ |β2| < 2r},
where r is a positive integer. If a satisfies the sum rules of order k, then k ≤ 2r.

Proof. Let b be the sequence on Z defined by

b(i) :=
∑
j∈Z

a(i− j, j), i ∈ Z.

Since a is a quincunx interpolatory mask, it is easily seen that b is an interpolatory
mask with the dilation matrix M = (2). Since a satisfies the sum rules of order k,
it follows that∑

i∈Z
b(2i+ 1)(2i+ 1)m

=
∑
i∈Z

∑
j∈Z

a(2i+ 1− j, j)(2i + 1− j + j)m = δ(m) ∀ 0 ≤ m < k.

Therefore, b satisfies the sum rules of order at least k. Since b is an interpolatory
mask supported on [1−2r, 2r−1], by Theorem 2.1 we have k ≤ 2r. This completes
the proof.

In the rest of this section, we shall study the smoothness property of quincunx
fundamental refinable functions.

For 0 < η ≤ 1, the Lipschitz space Lip
(
η, Lp(Rs)

)
consists of those functions f

in Lp(Rs) for which

‖f − f(· − t)‖p ≤ C‖t‖η ∀ t ∈ Rs,

where the constant C depends only on f . Let Zs+ := {(β1, · · · , βs) ∈ Zs : βi ≥
0 ∀ i = 1, · · · , s}. The Lp smoothness of a function f ∈ Lp(Rs) is described by its
Lp critical exponent νp(f) defined by

νp(f) := sup
{
n+ η :

∂µf

∂xµ
∈ Lip

(
η, Lp(Rs)

)
∀ µ ∈ Zs+, |µ| = n

}
.(2.3)

In [18], Jia completely characterized the L2 critical exponent of a refinable function
with an isotropic dilation matrix in terms of its mask provided that the shifts of the
refinable function are stable. The following result is a straightforward generalization
of Theorem 3.5 in Han [13].

Theorem 2.3. Let φ be the normalized solution of the refinement equation (1.2)
with a finitely supported mask a ∈ `0(Zs) and an s× s dilation matrix M such that∑
β∈Zs a(β) = m := | detM |. Suppose that M j is a multiple of the identity matrix

for some positive integer j. For any nonnegative integer k, let

σMk,p(a) := max{ lim
n→∞

‖∇ki Sna,Mδ‖1/np : i = 1, · · · , s},(2.4)

where the subdivision operator Sa,M is defined in (1.4). Then

min{k, νp(φ)} ≥ s/p− s logm σ
M
k,p(a).

In addition, if the shifts of φ are stable, then

min{k, νp(φ)} = s/p− s logm σ
M
k,p(a).
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In [14], it was demonstrated that σMk,2(a) can be computed by calculating the
spectral radius of a certain finite matrix. Let b be the sequence given by

b(α) :=
∑
β∈Zs

a(α+ β)a(β), α ∈ Zs.

The transition operator Tb,M associated with the sequence b and the dilation matrix
M is defined by

Tb,Mλ(α) =
∑
β∈Zs

b(Mα− β)λ(β), α ∈ Zs, λ ∈ `0(Zs).

From Theorem 4.1 in [14], we have

σMk,2(a) =
√
ρ(Tb,M |W ),

where ρ(Tb,M |W ) is the spectral radius of the operator Tb,M restricted to the finite
dimensional space W , and W is the minimal invariant subspace of Tb,M generated
by ∆k

j δ, j = 1, · · · , s, where

∆jλ(α) := −λ(α− ej) + 2λ(α)− λ(α + ej), α ∈ Zs, λ ∈ `(Zs).
The symbol of a sequence a on Zs is defined by

ã(z) :=
∑
β∈Zs

a(β)zβ , z ∈ (C\{0})s.(2.5)

We say that the symbol of a mask a is nonnegative if ã(e−iξ) ≥ 0 for all ξ ∈ Rs.
Let a be a finitely supported mask on Zs with a nonnegative symbol. Then from
Theorem 4.1 in [14], we have

σM2k,∞(a) = ρ(Ta,M |W ),

where the finite dimensional spaceW is the minimal invariant subspace of Ta,M gen-
erated by ∆k

j δ, j = 1, · · · , s. For discussion on subdivision operators and transition
operators, the reader is referred to [11, 17, 20].

Based on Theorem 2.3, we have the following result:

Theorem 2.4. Let φTa be a fundamental refinable function with a finitely supported
mask a and the dilation matrix T defined in (1.1). Suppose a is supported on

{(β1, β2) ∈ Z2 : |β1|+ |β2| < 2r, |β2| < r},
where r is a positive integer. If a satisfies the sum rules of order 2r, then

νp(φTa ) ≤ νp(φbr ) ∀ 1 ≤ p ≤ ∞,
where φbr is the fundamental refinable function with the mask br given in Theo-
rem 2.1.

Proof. Define a sequence b on Z as follows:

b(j) =
∑
i∈Z

a(i, j)/2, j ∈ Z.

We claim that b(j) = δ(j) for all j ∈ Z. Since a is a quincunx interpolatory mask
and a satisfies the sum rules of order 2r, we have∑

j∈Z
b(j)jm =

∑
j∈Z

∑
i∈Z

a(i, j)jm/2 = δ(m) ∀ 0 ≤ m < 2r.
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Since a is supported on {(β1, β2) ∈ Z2 : |β1| + |β2| < 2r, |β2| < r}, b is supported
on [1− r, r − 1]. Therefore,

r−1∑
j=1−r

b(j)jm = δ(m) ∀ 0 ≤ m < 2r.

Since the coefficient matrix of the above linear system of equations is a Vander-
monde matrix, it is easily seen that the unique solution is b(j) = δ(j) for all j ∈ Z.

Let c be the sequence on Z given by

c(i) :=
∑
j∈Z

S2
a,T δ(i, j)/2, i ∈ Z.

Then by the definition of the subdivision operator Sa,T , we have

c(i) =
∑
j∈Z

Sa,Ta(i, j)/2 =
∑
j∈Z

∑
β1∈Z

∑
β2∈Z

a(i− β1 − β2, j − β1 + β2)a(β1, β2)/2

=
∑
β1∈Z

∑
β2∈Z

a(β1, β2)
∑
j∈Z

a(i− β1 − β2, j)/2 =
∑
β1∈Z

∑
β2∈Z

a(β1, β2)δ(i− β1 − β2)

=
∑
β2∈Z

a(i− β2, β2),

where we have used the fact that
∑

j∈Z a(i − β1 − β2, j)/2 = b(i − β1 − β2) =
δ(i− β1− β2). From the proof of Theorem 2.2, we see that the sequence c must be
equal to the sequence br since a satisfies the sum rules of order 2r. Observe that

φTa =
∑
β∈Z2

S2
a,T δ(β)φTa (2 · −β).

Let a2 := S2
a,T δ. Since a is finitely supported, the sequence a2 is supported on

[−N,N ]2 for some positive integer N . Note that c(i) =
∑

j∈Z a2(i, j)/2. By induc-
tion, it is easily seen that

Snbr ,(2)δ(i) = Snc,(2)δ(i) = 2−n
∑
j∈Z

Sna2,2I2δ(i, j), i ∈ Z, n ∈ N,

and Sna2,2I2
δ is supported on [−2nN, 2nN ]2. Therefore, for any positive integer k,

∇k1Snbr ,(2)δ(i) = 2−n
2nN∑

j=−2nN

∇k1Sna2,2I2δ(i, j).

Applying the Hölder inequality to the above equality, we have

|∇k1Snbr ,(2)δ(i)|p ≤ 2−np(2n+1N + 1)p/q
∑
j∈Z
|∇k1Sna2,2I2δ(i, j)|

p

≤ 2−nC1

∑
j∈Z
|∇k1Sna2,2I2δ(i, j)|

p,

where 1/p+ 1/q = 1 and C1 = (2N + 1)p/q. Therefore,

‖∇k1Snbr,(2)δ‖p ≤ C
1/p
1 2−n/p‖∇k1Sna2,2I2δ‖p

from which it follows that

σ2I2
k,p (a2) ≥ lim

n→∞
‖∇k1Sna2,2I2δ‖

1/n
p ≥ 21/p lim

n→∞
‖∇k1Snbr ,(2)δ‖1/np = 21/pσ

(2)
k,p(br).
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On the other hand, since φTa is a fundamental function, the shifts of φTa are stable.
For a sufficiently large integer k, by Theorem 2.3,

νp(φTa ) = 2/p− log2 σ
2I2
k,p (a2) ≤ 2/p− log

(
21/pσ

(2)
k,p(br)

)
= 1/p− log2 σ

(2)
k,p(br) = νp(φbr ).

We are done.

3. Construction of quincunx interpolatory masks

Our construction of quincunx interpolatory masks relies on the solvability of
certain linear systems of equations. By Z2

+ we denote the set of all elements µ =
(µ1, µ2) ∈ Z2 with both µ1 and µ2 nonnegative. Let |µ| denote |µ1| + |µ2|. For a
positive integer r ∈ N and a nonnegative integer k, define

Γkr := {(µ1, µ2) ∈ Z2
+ : µ1 + µ2 < 2r + 2k,

µ2 < 2r − 1}\{(0, 2j − 1) : j = 1, · · · , r − 1}.
(3.1)

The cardinality of a set E is denoted by #E. To facilitate our discussion, we
recall Lemma 4.2 in [15].

Lemma 3.1. Let r be a positive integer and let Γ0
r be the set defined in (3.1). Let

p be a linear combination of the monomials xµ1
1 xµ2

2 , (µ1, µ2) ∈ Γ0
r. Let Lj and

Hj (j = 1, · · · , r) be the lines x1 − lj = 0 and x1 − hj = 0, respectively, where
l1, · · · , lr, h1, · · · , hr are mutually distinct nonzero real numbers. Suppose E is a
subset of the union of these lines such that #(E ∩ Lj) = #(E ∩Hj) = 2j − 1 for
each j = 1, · · · , r. If p vanishes on E, then p vanishes everywhere. Consequently,
the square matrix (tµ1

1 tµ2
2 )(t1,t2)∈E,(µ1,µ2)∈Γ0

r
is nonsingular.

The following result is an extension of the above lemma.

Lemma 3.2. Let r be a positive integer and k a nonnegative integer. Let p be
a linear combination of the monomials xµ1

1 xµ2
2 , (µ1, µ2) ∈ Γkr where Γkr is the set

given in (3.1). Let Lj and Hj (j = 1, · · · , r + k) be the lines x1 − lj = 0 and
x1 − hj = 0, respectively, where l1, · · · , lr+k, h1, · · · , hr+k are mutually distinct
nonzero real numbers. Suppose E is a subset of the union of these lines such that
#(E∩Lj) = #(E∩Hj) = 2j−1 for each j = 1, · · · , r and #(E∩Lj) = #(E∩Hj) =
2r−1 for each j = r+1, · · · , r+k. If p vanishes on E, then p vanishes everywhere.
Consequently, the square matrix (tµ1

1 tµ2
2 )(t1,t2)∈E,(µ1,µ2)∈Γkr

is nonsingular.

Proof. The proof proceeds by induction on k. The case k = 0 follows from Lemma
3.1. Suppose k ≥ 1 and the conclusion in Lemma 3.2 is true for k − 1. We
demonstrate that it is also true for k.

Since p is a linear combination of the monomials xµ1
1 xµ2

2 , (µ1, µ2) ∈ Γkr , from
the definition of Γkr we see that the degree of the univariate polynomial p(lr+k, x2)
is at most 2r − 2. But p(lr+k, x2) has 2r − 1 zeros on E ∩ Lr+k. Therefore,
p(lr+k, x2) = 0 for all x2 ∈ R. It follows that p(x1, x2) = (x1 − lr+k)u(x1, x2),
where u is a polynomial in x1 and x2. It is easy to see that the degree of the
univariate polynomial u(hr+k, x2) is at most 2r − 2. But u(hr+k, x2) has 2r − 1
zeros on E ∩Hr+k since hr+k 6= lr+k. Therefore, u(x1, x2) = (x1 − hr+k)q(x1, x2).
Thus, p(x1, x2) = (x1 − lr+k)(x1 − hr+k)q(x1, x2). Since lr+khr+k 6= 0, we observe
that q is a linear combination of the monomials xµ1

1 xµ2
2 , (µ1, µ2) ∈ Γk−1

r . Moreover,
q vanishes on the set

E′ := {E ∩ Lj : j = 1, · · · , r + k − 1} ∪ {E ∩Hj : j = 1, · · · , r + k − 1}.
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By induction hypothesis, q vanishes everywhere. Therefore, the polynomial p van-
ishes everywhere.

Note that #E = #Γkr = 2r2 + (4r − 2)k. In order to prove that the matrix
(tµ1

1 tµ2
2 )(t1,t2)∈E,(µ1,µ2)∈Γkr

is nonsingular, it suffices to show that the linear system
of homogeneous equations∑

(µ1,µ2)∈Γkr

cµ1,µ2t
µ1
1 tµ2

2 = 0, (t1, t2) ∈ E,

only has the trivial solution for cµ1,µ2 , (µ1, µ2) ∈ Γkr . For this purpose, let

p(x1, x2) :=
∑

(µ1,µ2)∈Γkr

cµ1,µ2x
µ1
1 xµ2

2 .

Then p(x1, x2) is a linear combination of the monomials xµ1
1 xµ2

2 , (µ1, µ2) ∈ Γkr and
it vanishes on E. By what has been proved, p = 0. This completes the proof.

We are in a position to construct a family of quincunx interpolatory masks.

Theorem 3.3. Given a pair of nonnegative integers m and n with m+n being an
odd integer, there exists a unique quincunx interpolatory mask qm,n such that qm,n
is supported on

{(β1, β2) ∈ Z2 : |β1| ≤ m, |β2| ≤ n},

and qm,n satisfies the sum rules of order m + n + 1 with respect to the quincunx
lattice which is defined to be {(β1, β2) ∈ Z2 : β1 + β2 is an even integer }.

Proof. Without loss of generality, we assume n ≤ m. Define

Gm,n := {(β1, β2) ∈ Z2 : |β1| ≤ m, |β2| ≤ n, β1 + β2 is an odd integer }.(3.2)

Let Γm,n := Γ
m−n−1

2
n+1 . Note that #Γm,n = #Gm,n = 2mn+m+ n+ 1. We wish

to prove that the square matrix
(
(β1 + β2)µ1(β1− β2)µ2

)
(β1,β2)∈Gm,n,(µ1,µ2)∈Γm,n

is
nonsingular. For this purpose, let Em,n := {(β1 + β2, β1 − β2) : (β1, β2) ∈ Gm,n}.

We observe that Em,n intersects the line x1±(m+n+2−2j) = 0 at exactly 2j−1
distinct points for j = 1, · · · , n+ 1 and it intersects the line x1 ± (2j − 2n− 3) = 0
at exactly 2n + 1 distinct points for j = n + 2, · · · , m+n+1

2 . Thus, Lemma 3.2 is
applicable and we conclude that the square matrix(

(β1 + β2)µ1(β1 − β2)µ2
)

(β1,β2)∈Gm,n,(µ1,µ2)∈Γm,n

is nonsingular. Consequently, the linear system of equations∑
(β1,β2)∈Gm,n

cβ1,β2(β1 + β2)µ1(β1 − β2)µ2 = δ(µ1, µ2) ∀ (µ1, µ2) ∈ Γm,n(3.3)

has a unique solution for {cβ1,β2 : (β1, β2) ∈ Gm,n}.
Let cβ1,β2 , (β1, β2) ∈ Gm,n be the unique solution to the linear system (3.3). We

claim that ∑
(β1,β2)∈Gm,n

cβ1,β2(β1 + β2)µ1(β1 − β2)µ2 = δ(µ1, µ2)(3.4)

is valid for all (µ1, µ2) ∈ Z2
+ satisfying µ1 + µ2 < m+ n+ 1.
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Observe that the set Gm,n is symmetric about the origin. Therefore,∑
(β1,β2)∈Gm,n

c−β1,−β2(β1 + β2)µ1(β1 − β2)µ2 = δ(µ1, µ2) ∀ (µ1, µ2) ∈ Γm,n.

By the uniqueness of the above system, we have c−β1,−β2 = cβ1,β2 for all (β1, β2) ∈
Gm,n. Thus, this symmetry of cβ1,β2 implies∑

(β1,β2)∈Gm,n

cβ1,β2(β1 − β2)2j−1 = 0 ∀ j ∈ N.

Hence, (3.4) holds true for any (µ1, µ2) ∈ Z2
+ satisfying µ1 + µ2 < m + n + 1

and µ2 < 2n + 1. To prove that (3.4) holds true for any (µ1, µ2) ∈ Z2
+ with

µ1 + µ2 < m + n + 1, it suffices to prove that for any (µ1, µ2) ∈ Z2
+ such that

µ1 + µ2 < m+ n+ 1 and µ2 ≥ 2n+ 1,∑
(β1,β2)∈Gm,n

cβ1,β2(β1 + β2)µ1 (β1 − β2)µ2 = 0.(3.5)

Note that (β1, β2) ∈ Em,n implies |β1 − β2| ≤ n. Hence, the set Em,n is contained
in the set {(β1, β2) ∈ Z2 : β2 = β1 − 2j, j = −n, · · · , n}. Let µ2 be an integer such
that µ2 ≥ 2n+ 1. By using long division of polynomials, we have

xµ2
2 = qµ2(x1, x2)

n∏
j=−n

(
x2 − (x1 − 2j)

)
+ P (x1, x2), x1, x2 ∈ R,(3.6)

where qµ2 is a polynomial in two variables and P (x1, x2) is a linear combination of
the monomials xν1

1 x
ν2
2 , where (ν1, ν2) ∈ Z2

+, ν1 + ν2 ≤ µ2 and ν2 < 2n + 1. The
proof of (3.6) proceeds by induction on µ2. It is evident that (3.6) is valid for
µ2 = 2n + 1. If (3.6) is true for µ2, then write P (x1, x2) = c(x1)x2n

2 + Q(x1, x2)
such that the degree of Q(x1, x2) in x2 is less than 2n. Thus,

xµ2+1
2 = x2qµ2(x1, x2)

n∏
j=−n

(
x2 − (x1 − 2j)

)
+ c(x1)x2n+1

2 + x2Q(x1, x2).

Since (3.6) holds for µ2 = 2n+1, it follows from the above equality that (3.6) holds
for µ2 + 1. This completes the induction procedure. By setting x1 = 0 and x2 = 0
in (3.6), we obtain P (0, 0) = 0.

Note that for |β1| ≤ m and |β2| ≤ n, (β1 − β2) − (β1 + β2)− 2j = 0 for some j
with −n ≤ j ≤ n. It follows from (3.6) that∑
(β1,β2)∈Gm,n

cβ1,β2(β1 + β2)µ1(β1 − β2)µ2

=
∑

(β1,β2)∈Gm,n

cβ1,β2(β1 + β2)µ1P (β1 + β2, β1 − β2).

Note that xµ1
1 P (x1, x2) is a linear combination of the monomials xν1

1 x
ν2
2 , (ν1, ν2) ∈

Z2
+ such that ν1 + ν2 < m+ n+ 1 and ν2 < 2n+ 1. Therefore, by what has been

proved and P (0, 0) = 0, we have∑
(β1,β2)∈Gm,n

cβ1,β2(β1 + β2)µ1P (β1 + β2, β1 − β2) = 0

from which (3.5) follows.
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Let us construct the desired mask qm,n as follows:

qm,n(β1, β2) =


1, if β1 = β2 = 0;
cβ1,β2 , if (β1, β2) ∈ Gm,n;
0, otherwise.

It is evident that qm,n is a quincunx interpolatory mask and it follows from (3.4)
that the quincunx interpolatory mask qm,n satisfies the sum rules of order m+n+1,
as desired.

If there is another quincunx interpolatory mask a satisfying all the conditions in
Theorem 3.3, then∑

(β1,β2)∈Gm,n

a(β1, β2)p(β1, β2) = p(0, 0) ∀ p ∈ Πm+n.

For (µ1, µ2) ∈ Γm,n, we have µ1 + µ2 < m+ n+ 1; hence, it follows that

∑
(β1,β2)∈Gm,n

a(β1, β2)(β1 + β2)µ1(β1 − β2)µ2 = δ(µ1, µ2) ∀ (µ1, µ2) ∈ Γm,n.

Since the solution to the linear system of equations (3.3) is unique, we must have

a(β1, β2) = cβ1,β2 = qm,n(β1, β2) ∀ (β1, β2) ∈ Gm,n.

Hence, the quincunx interpolatory mask a must be the mask qm,n.

The above proof tells us that for a pair of nonnegative integers m and n such
that m + n is an odd integer, the quincunx interpolatory mask qm,n is minimally
supported among all the quincunx interpolatory masks which satisfy the sum rules
of order m + n + 1. Also the uniqueness of the mask qm,n implies that qm,n is
symmetric about both the axis x1 = 0 and the axis x2 = 0. Let φTqm,n be the
normalized solution to the refinement equation (1.2) with the mask qm,n and the
dilation matrix T defined in (1.1). By Theorem 2.4, νp(φTqm,n) ≤ νp(φb(m+n+1)/2) for
all 1 ≤ p ≤ ∞, where φb(m+n+1)/2 is the univariate Deslauriers-Dubuc fundamental
refinable function with the mask b(m+n+1)/2 given by Theorem 2.1. In Section 4,
all of our examples have the property that ν2(φTqm,n) = ν2(φb(m+n+1)/2 ).

It is obvious that q2r−1,0(j, 0) = q0,2r−1(0, j) = br(j) for all j ∈ Z and it is easy
to verify that νp(φTq2r−1,0

) = νp(φTq0,2r−1
) = νp(φbr ) for all 1 ≤ p ≤ ∞ and r ∈ N.

In the following we shall prove that the symbols of both q2r,1 and q2r−1,2 are
nonnegative for all r ∈ N. From (1.3), it is easy to verify that a is a quincunx
interpolatory mask if and only if

ã(e−iξ1 , e−iξ2) + ã(e−i(ξ1+π), e−i(ξ2+π)) = 2 ∀ ξ1, ξ2 ∈ R.

Theorem 3.4. For each positive integer r, the symbol of the quincunx interpolatory
mask q2r,1 defined in Theorem 3.3 satisfies

q̃2r,1(e−iξ1 , e−iξ2)

=
(2r)!

22r−1r!(r − 1)!

∫ cos ξ1

−1

(1− t2)r−1(1− t cos ξ2) dt, ξ1, ξ2 ∈ R,
(3.7)
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or equivalently, the symbol of q2r,1 is

q̃2r,1(z1, z2)

= b̃r(z1) + (−1)r
(2r)!

24r+1r!r!
(z−1

1 − z1)2r(z−1
2 + z2), z1, z2 ∈ C\{0},

(3.8)

where br is the univariate interpolatory mask given in Theorem 2.1. Moreover, the
symbol of q2r,1 is nonnegative, i.e., q̃2r,1(e−iξ) ≥ 0 for all ξ ∈ R2.

Proof. Let a denote the mask with ã(e−iξ1 , e−iξ2) being the right-hand side of (3.7).
To complete the proof, it suffices to prove that a = q2r,1. Note that

ã(e−i(ξ1+π), e−i(ξ2+π)) =
(2r)!

22r−1r!(r − 1)!

∫ − cos ξ1

−1

(1− t2)r−1(1 + t cos ξ2) dt

=
(2r)!

22r−1r!(r − 1)!

∫ 1

cos ξ1

(1− t2)r−1(1− t cos ξ2) dt.

By induction and integration by parts, we obtain∫ 1

−1

(1 − t2)k dt =
2k

2k + 1

∫ 1

−1

(1− t2)k−1 dt =
22k+2k!(k + 1)!

(2k + 2)!
, k ∈ N.(3.9)

Thus, we have

ã(e−iξ1 , e−iξ2) + ã(e−i(ξ1+π), e−i(ξ2+π))

=
(2r)!

22r−1r!(r − 1)!

∫ 1

−1

(1− t2)r−1(1 − t cos ξ2) dt

=
(2r)!

22r−1r!(r − 1)!

∫ 1

−1

(1− t2)r−1 dt = 2.

Hence, a is a quincunx interpolatory mask. Let Q(η1, η2) := ã(e−iξ1 , e−iξ2) with
η1 = cos ξ1 and η2 = cos ξ2. Then it is easy to verify that

∂µ1+µ2Q(η1, η2)
∂ηµ1

1 ∂ηµ2
2

∣∣∣∣
η1=−1,η2=−1

= 0 ∀ (µ1, µ2) ∈ Z2
+, µ1 + µ2 ≤ r.

It follows that
∂µ1+µ2 ã(e−iξ1 , e−iξ2)

∂ξµ1
1 ∂ξµ2

2

∣∣∣∣
ξ1=π,ξ2=π

= 0 ∀ (µ1, µ2) ∈ Z2
+, µ1 + µ2 ≤ 2r,

or equivalently, a satisfies the sum rules of order 2r+1 with respect to the quincunx
lattice. Since a is symmetric about the origin and is a quincunx interpolatory mask,
by the definition of sum rules, a must satisfy the sum rules of order 2r + 2. Note
that a is supported on [−2r, 2r] × [−1, 1]. Hence, by Theorem 3.3, a must be the
unique mask q2r,1. By (3.7), it is evident that the symbol of q2r,1 is nonnegative.
By a similar argument and Theorem 2.1, we have (see Meyer [22] and Micchelli [23])

b̃r(e−iξ1) =
(2r)!

22r−1r!(r − 1)!

∫ cos ξ1

−1

(1− t2)r−1 dt.(3.10)

Moreover, ∫ cos ξ1

−1

(1 − t2)r−1(−t cos ξ2) dt = − 1
2r

(1− cos2 ξ1)r cos ξ2.

Therefore, q̃2r,1(z1, z2) has the desired representation as given in (3.8).
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Theorem 3.5. For each positive integer r > 1, the symbol of the quincunx inter-
polatory mask q2r−1,2 defined in Theorem 3.3 satisfies that for any ξ1, ξ2 ∈ R,

q̃2r−1,2(e−iξ1 , e−iξ2) =
(2r − 1)!

22r−1r!(r − 1)!

∫ cos ξ1

−1

(1− t2)r−2

×
[
(2r − 2)(1− t cos ξ2)2 + (1− t2) sin2 ξ2

]
dt,

(3.11)

or equivalently, the symbol of q2r−1,2 is

q̃2r−1,2(z1, z2)

= b̃r(z1) +
(−1)r(2r)!
24r+1r!r!

(z1 − z−1
1 )2r−2

×
[
6(z1 + z−1

1 )− 8(z2 + z−1
2 ) + (z1 + z−1

1 )(z2
2 + z−2

2 )
]
,

(3.12)

where br is the mask given in Theorem 2.1. Moreover, the symbol of q2r−1,2 is
nonnegative, i.e., q̃2r−1,2(e−iξ) ≥ 0 for all ξ ∈ R2.

Proof. Let a denote the mask with ã(e−iξ1 , e−iξ2) being the right-hand side of
(3.11). To complete the proof, it suffices to prove a = q2r−1,2. Note that

ã(e−i(ξ1+π), e−i(ξ2+π))

=
(2r − 1)!

22r−1r!(r − 1)!

∫ − cos ξ1

−1

(1− t2)r−2
[
(2r − 2)(1 + t cos ξ2)2 + (1− t2) sin2 ξ2

]
dt

=
(2r − 1)!

22r−1r!(r − 1)!

∫ 1

cos ξ1

(1− t2)r−2
[
(2r − 2)(1− t cos ξ2)2 + (1 − t2) sin2 ξ2

]
dt.

Thus, from the above equality and (3.9), we obtain

ã(e−iξ1 , e−iξ2) + ã(e−i(ξ1+π), e−i(ξ2+π))

=
(2r − 1)!

22r−1r!(r − 1)!

∫ 1

−1

(1 − t2)r−2
[
(2r − 2)(1− t cos ξ2)2 + (1− t2) sin2 ξ2

]
dt

=
(2r − 1)!

22r−2r!(r − 2)!

∫ 1

−1

(1 − t2)r−2(1 + t2) dt

+
(2r − 1)! sin2 ξ2
22r−1r!(r − 1)!

∫ 1

−1

(1− t2)r−2
(
1− (2r − 1)t2

)
dt = 2.

Therefore, it follows that a is a quincunx interpolatory mask. Let Q(η1, η2) :=
ã(e−iξ1 , e−iξ2) with η1 = cos ξ1 and η2 = cos ξ2. Then it is easy to verify that

∂µ1+µ2Q(η1, η2)
∂ηµ1

1 ∂ηµ2
2

∣∣∣∣
η1=−1,η2=−1

= 0 ∀ (µ1, µ2) ∈ Z2
+, µ1 + µ2 ≤ r.

Hence, it follows that

∂µ1+µ2 ã(e−iξ1 , e−iξ2)
∂ξµ1

1 ∂ξµ2
2

∣∣∣∣
ξ1=π,ξ2=π

= 0 ∀ (µ1, µ2) ∈ Z2
+, µ1 + µ2 ≤ 2r,

or equivalently, a satisfies the sum rules of order 2r+1 with respect to the quincunx
lattice. Since a is symmetric about the origin and is a quincunx interpolatory mask,
by the definition of sum rules, a must satisfy the sum rules of order 2r + 2. Note
that the sequence a is supported on [1−2r, 2r−1]× [−2, 2]. Therefore, by Theorem
3.3, a must be the unique mask q2r−1,2. By (3.11), it is evident that the symbol of
q2r−1,2 is nonnegative. By (3.10) and integration by parts, q̃2r−1,2 has the desired
representation as given in (3.12).
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Let M denote either the matrix Q or T defined in (1.1). Let a be a quincunx
interpolatory mask such that ã(e−iξ1 , e−iξ2) ≥ 0 for all (ξ1, ξ2) ∈ R2. Note that

φ̂Ma (ξ) =
∞∏
j=1

(
ã(e−i(M

T )−jξ)/2
)
, ξ ∈ R2.(3.13)

For a positive integer n, define

fn(ξ) :=
n∏
j=1

(
ã(e−i(M

T )−jξ)/2
)
χ[−π,π)2((MT )−nξ), ξ ∈ R2.

Since the symbol of a is nonnegative, we have φ̂Ma (ξ) ≥ 0 and fn(ξ) ≥ 0 for all
ξ ∈ R2. Moreover, limn→∞ fn(ξ) = φ̂Ma (ξ) for all ξ ∈ R2. Since a is a quincunx
interpolatory mask, we have ã(e−iξ1 , e−iξ2) + ã(e−i(ξ1+π), e−i(ξ2+π)) = 2. With the
help of this relation, by induction on n we can easily verify that

∫
R2 fn(ξ) dξ = 4π2

for all n ∈ N. Therefore, by Fatou’s lemma, we have∫
R2
|φ̂Ma (ξ)| dξ =

∫
R2
φ̂Ma (ξ) dξ ≤ lim n→∞

∫
R2
fn(ξ) dξ = 4π2.

So φ̂Ma ∈ L1(R2) and φMa is a continuous function. If a is one of the masks
q2r−1,0, q2r,1, q2r+1,2, then ã(e−iξ1 , e−iξ2) = 0 if and only if ξ1 = (2k + 1)π, k ∈ Z.
This can be proved by using (3.7) and (3.11). By (3.13), it is not difficult to demon-
strate that

∑
β∈Z2 φ̂Ma (ξ + 2πβ) 6= 0 for all ξ ∈ [−π, π)2. That is, the shifts of φMa

are stable (see [19]). Since the shifts of φMa are stable and φMa is continuous, by
Theorem 3.4 in [14], the subdivision scheme associated with mask a and the dilation
matrix M converges in the L∞ norm. Therefore, φMa is a fundamental function.

4. Examples of quincunx interpolatory masks

In this section, we shall explicitly compute several examples of qm,n. For both
p = 2 and p = ∞, we calculate the Lp critical exponents of both φTqm,n and φQqm,n ,
where the dilation matrices T and Q are given in (1.1). In particular, we are
interested in the following two families of quincunx interpolatory masks: for any
r ∈ N,

hr(i, j) = qr,r−1(i, j), (i, j) ∈ Z2,

gr(i, j) :=
(
qr,r−1(i, j) + qr,r−1(j, i)

)
/2, (i, j) ∈ Z2.

(4.1)

It is evident that both hr and gr satisfy the sum rules of optimal order 2r. All
the masks hr are symmetric about both the axis x1 = 0 and the axis x2 = 0.
All the masks gr are symmetric about the axis x1 = 0, the axis x2 = 0, and the
lines x1 + x2 = 0 and x1 − x2 = 0. If the symbol of hr is nonnegative, then the
symbol of gr is nonnegative since 2g̃r(e−i(ξ1,ξ2)) = h̃r(e−i(ξ1,ξ2)) + h̃r(e−i(ξ2,ξ1))
for all (ξ1, ξ2) ∈ R2. These quincunx interpolatory masks hr and gr have a close
relation with the optimal interpolatory masks with the dilation matrix M = 2I2
proposed in [15].
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Example 4.1. The quincunx interpolatory mask h2 is supported on [−2, 2]×[−1, 1]
and is given by  −1/16 0 1/8 0 −1/16

0 1/2 1 1/2 0

−1/16 0 1/8 0 −1/16

 .
Then h2 satisfies the sum rules of order 4 and by Theorem 3.4 the symbol of h2 is
nonnegative. Moreover, ν2(φTh2

) ≈ 2.44077, ν∞(φTh2
) = 2, ν2(φQh2

) ≈ 1.09619, and
ν∞(φQh2

) ≈ 0.47637.

Example 4.2. The quincunx interpolatory mask h3 is supported on [−3, 3]×[−2, 2]
and is given by 

3
256 0 − 3

256 0 − 3
256 0 3

256

0 − 3
32 0 3

16 0 − 3
32 0

1
128 0 63

128 1 63
128 0 1

128

0 − 3
32 0 3

16 0 − 3
32 0

3
256 0 − 3

256 0 − 3
256 0 3

256


.

Then h3 satisfies the sum rules of order 6, and the symbol of h3 is nonnegative, by
Theorem 3.5. Moreover, ν2(φTh3

) ≈ 3.17513, ν∞(φTh3
) ≈ 2.83008, ν2(φQh3

) ≈ 1.94692,
and ν∞(φQh3

) ≈ 1.28289. Therefore, φTh3
is a C2 fundamental refinable function and

φQh3
is a C1 fundamental refinable function.

Example 4.3. The quincunx interpolatory mask h4 is supported on [−4, 4]×[−3, 3]
and is given by

− 5
2048 0 1

512 0 1
1024 0 1

512 0 − 5
2048

0 3
128 0 − 3

128 0 − 3
128 0 3

128 0

− 3
2048 0 − 57

512 0 231
1024 0 − 57

512 0 − 3
2048

0 1
64 0 31

64 1 31
64 0 1

64 0

− 3
2048 0 − 57

512 0 231
1024 0 − 57

512 0 − 3
2048

0 3
128 0 − 3

128 0 − 3
128 0 3

128 0

− 5
2048 0 1

512 0 1
1024 0 1

512 0 − 5
2048


.

Then h4 satisfies the sum rules of order 8 and the symbol of h4 is nonnega-
tive. Moreover, ν2(φTh4

) ≈ 3.79313, ν∞(φTh4
) ≈ 3.40412, ν2(φQh4

) ≈ 2.67072, and
ν∞(φQh4

) ≈ 2.02882. Therefore, φTh4
is a C3 fundamental refinable function and φQh4

is a C2 fundamental refinable function.

The symbol of each mask in Tables 1 and 2 is nonnegative. The L2 and L∞
critical exponents of several quincunx fundamental refinable functions are presented
in Tables 1 and 2. For the graphs and contours of several quincunx fundamental
refinable functions, see Figures 1–6.
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Table 1. L2 and L∞ critical exponents of several quincunx fundamental refinable functions with respect to the dilation
matrix Q.

r ν2(φQhr ) ν2(φQgr ) ν2(φQq2r−2,1
) ν2(φQq2r−3,2

) ν∞(φQhr ) ν∞(φQgr ) ν∞(φQq2r−2,1
) ν∞(φQq2r−3,2

)

1 1.09619 1.57764 1.09619 N/A 0.47637 0.61152 0.47637 N/A
2 1.94692 2.44792 1.94692 1.94692 1.28289 1.45934 1.28289 1.28289
3 2.67072 3.15425 1.45796 2.67072 2.02882 2.21896 1.18962 2.02882
4 3.30421 3.76527 1.11848 1.98694 2.70453 2.90350 1.00883 1.73121
5 3.87926 4.31790 0.89310 1.51068 3.32309 3.53133 0.84518 1.41349
6 4.41608 4.83803 0.73342 1.19681 3.89836 4.11667 0.70985 1.15632
7 4.92420 5.33983 0.61210 0.97433 4.44177 4.67061 0.59992 0.95570
8 5.40677 5.83003 0.51707 0.80791 4.96136 5.20149 0.51043 0.79862

Table 2. L2 and L∞ critical exponents of several quincunx fundamental refinable functions with respect to the dilation
matrix T .

r ν2(φThr ) ν2(φTgr ) ν2(φTq2r−2,1
) ν2(φTq2r−3,2

) ν∞(φThr ) ν∞(φTgr ) ν∞(φTq2r−2,1
) ν∞(φTq2r−3,2

)
1 1.5 1.57764 1.5 N/A 1.0 0.61152 1.00000 N/A
2 2.44077 2.44792 2.44077 2.44077 2.0 1.45934 2.00000 2.00000
3 3.17513 3.15425 3.17513 3.17513 2.83008 2.21896 2.83008 2.83008
4 3.79313 3.76527 3.79313 3.79313 3.40412 2.90350 3.55113 3.55113
5 4.34408 4.31790 4.34408 4.34408 3.93422 3.53133 4.19357 4.19357
6 4.86202 4.83803 4.86202 4.86202 4.45232 4.11667 4.77675 4.77675
7 5.36283 5.33983 5.36283 5.36283 4.95803 4.67061 5.31732 5.31732
8 5.85293 5.83003 5.85293 5.85293 5.45328 5.20149 5.82944 5.82944
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able function φTh2

in Example 4.1.
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5. Quincunx biorthogonal wavelets

In this section, we shall discuss how to construct quincunx biorthogonal wavelets.
Throughout this section, the 2 × 2 matrix M denotes either the dilation matrix Q
or the dilation matrix T defined in (1.1).

A quincunx biorthogonal wavelet comes from a pair of a primal (refinable) func-
tion φ and a dual (refinable) function φd such that

φ =
∑
β∈Z2

a(β)φ(M · −β) and φd =
∑
β∈Z2

ad(β)φd(M · −β),

where a and ad are finitely supported masks on Z2 and the functions φ and φd

satisfy the biorthogonal condition∫
R2
φ(t+ β)φd(t) dt = δ(β) ∀ β ∈ Z2.(5.1)

From these two refinable functions, a wavelet function ψ and a dual wavelet function
ψd are derived by

ψ =
∑
β∈Z2

(−1)|e2−β|ad(e2 − β)φ(M · −β)

and

ψd =
∑
β∈Z2

(−1)|e2−β|a(e2 − β)φd(M · −β),

where e2 = (0, 1)T . Let f be a function. For j ∈ Z and β ∈ Z2, define fj,β :=
2j/2f(M j · −β). Then it follows from (5.1) that

〈ψdi,α, ψj,β〉 :=
∫
Rs
ψj,β(x)ψdi,α(x) dx = δ(i− j)δ(α− β) ∀ i, j ∈ Z, α, β ∈ Z2.

Therefore, for any f ∈ L2(R2), we have

f =
∑
j∈Z

∑
β∈Z2

〈f, ψdj,β〉ψj,β =
∑
j∈Z

∑
β∈Z2

〈f, ψj,β〉ψdj,β .

An advantage of quincunx biorthogonal wavelets rests on the fact that the associ-
ated wavelet function ψ and the dual wavelet function ψd can be easily obtained.
If the dilation matrix is 2I2, then there are three associated wavelet functions and
three dual wavelet functions; hence, there is no easy way of deriving wavelets from
the primal and dual refinable functions.

A necessary condition for the functions φ and φd to satisfy the biorthogonal
condition (5.1) is that their masks a and ad satisfy the discrete biorthogonal relation∑

β∈Z2

a(β +Mα) ad(β) = | detM |δ(α) ∀ α ∈ Z2.(5.2)

Let a be a finitely supported sequence on Z2 such that
∑

β∈Z2 a(β) = | detM |. If
there exists a finitely supported sequence ad on Z2 such that (5.2) holds true, then
the mask a is called a primal mask and ad is called a dual mask of a. Note that
QZ2 = TZ2 where the matrices Q and T are given in (1.1). If a and ad satisfy (5.2)
with the dilation matrix Q, then (5.2) also holds true with the dilation matrix T ,
and vice versa. Therefore, in this section, we shall deal with the dilation matrix Q
only.
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Let a and ad be a pair of primal and dual masks. Let φMa and φMad be the
normalized solutions to the refinement equations with the dilation matrix M and
the masks a and ad, respectively. Then the functions φMa and φMad lie in L2(R2)
and satisfy the biorthogonal condition (5.1) if and only if the subdivision schemes
associated with the dilation matrix M and the masks a and ad converge in the L2

norm. See [14] for a characterization of Lp (1 ≤ p ≤ ∞) convergence of subdivision
schemes with a general dilation matrix. The concept of vanishing moments of a
quincunx biorthogonal wavelet plays an important role in applications. See [2, 4, 6,
17] and references therein for discussions on vanishing moments and their relation to
sum rules. Given a primal mask, it is desirable to construct a dual mask with high
order of sum rules and relatively small support. Given an interpolatory mask as a
primal mask with the dilation matrix M = 2I2, a coset by coset (CBC) algorithm
was proposed in [13] to give dual masks with arbitrary order of sum rules. The
CBC algorithm was later generalized to general primal masks in [2].

Given µ = (µ1, µ2) ∈ Z2
+, its factorial is µ! := µ1!µ2!. For ν = (ν1, ν2) ∈ Z2

+, by
ν ≤ µ we mean ν1 ≤ µ1 and ν2 ≤ µ2. By ν < µ we mean ν ≤ µ and ν 6= µ.

We shall employ the CBC algorithm to construct quincunx biorthogonal wavelets.
The reader is referred to [2, 13] for more details about the CBC algorithm.

Theorem 5.1. Let Q be the dilation matrix defined in (1.1) and let a be a primal
mask satisfying

∑
β∈Z2 a(Qβ) =

∑
β∈Z2 a(e2 +Qβ) = 1 where e2 = (0, 1)T . Let ad

be a dual mask of a. Define

ha(µ) := 2−1
∑
β∈Z2

ad(β)(Q−1β)µ, µ ∈ Z2
+.

If ad satisfies the sum rules of order k for some positive integer k, then ha(0) = 1
and

ha(µ) = δ(µ)− 1
2

∑
0≤ν<µ

(−1)|µ−ν|
µ!

ν!(µ − ν)!
ha(ν)

×
∑
β∈Z2

a(β) (Q−1β)µ−ν , |µ| < k.
(5.3)

Conversely, if ha(0) = 1 and ha(µ) (|µ| < k) are given by (5.3), and if∑
β∈Z2

ad(e2 +Qβ)(Q−1e2 + β)ν = ha(ν) ∀ |ν| < k,(5.4)

then ad satisfies the sum rules of order k.

Proof. Let Ω := {0, e2}. Since ad is a dual mask of a, it follows from (5.2) that

2δ(µ) =
∑
α∈Z2

∑
β∈Z2

a(β −Qα)ad(β)αµ

=
∑
ε∈Ω

∑
α∈Z2

∑
β∈Z2

a(ε +Qβ −Qα)ad(ε+Qβ)αµ, µ ∈ Z2
+.

Note that (x − y)µ =
∑

0≤ν≤µ(−1)|µ−ν|
(
µ
ν

)
xνyµ−ν , where

(
µ
ν

)
:= µ!

ν!(µ−ν)! . Conse-
quently,

αµ =
∑

0≤ν≤µ
(−1)|µ−ν|

(
µ

ν

)
(Q−1ε+ β − α)µ−ν(Q−1ε+ β)ν .
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Hence, we obtain

2δ(µ) =
∑

0≤ν≤µ
(−1)|µ−ν|

(
µ

ν

)∑
ε∈Ω

∑
α∈Z2

a(ε+Qα)(Q−1ε+ α)µ−ν

×
∑
β∈Z2

ad(ε+Qβ)(Q−1ε+ β)ν .
(5.5)

Suppose ad satisfies the sum rules of order k. Then by (2.2) we have∑
β∈Z2

ad(Qβ)βν =
∑
β∈Z2

ad(e2 +Qβ)(Q−1e2 + β)ν = ha(ν) ∀ |ν| < k.

This together with (5.5) yields

2δ(µ) =
∑

0≤ν≤µ
(−1)|µ−ν|

(
µ

ν

)
ha(ν)

×
∑
ε∈Ω

∑
α∈Z2

a(ε +Qα)(Q−1ε+ α)µ−ν , |µ| < k,
(5.6)

from which (5.3) follows at once.
Now suppose ha(0) = 1 and ha(µ) (|µ| < k) are given by the recursive relation

(5.3). Subtracting (5.6) from (5.5), we obtain∑
0≤ν≤µ

(−1)|µ−ν|
(
µ

ν

)∑
ε∈Ω

∑
α∈Z2

a(ε+Qα)(Q−1ε+ α)µ−ν

×
[ ∑
β∈Z2

ad(ε +Qβ)(Q−1ε+ β)ν − ha(ν)
]

= 0.

If (5.4) holds, then it follows from the above equality that∑
0≤ν≤µ

(−1)|µ−ν|
(
µ

ν

) ∑
α∈Z2

a(Qα)αµ−ν
[ ∑
β∈Z2

ad(Qβ)βν − ha(ν)
]

= 0 ∀ |µ| < k.

Note that
∑
α∈Z2 a(Qα) = 1, by induction on µ we deduce that∑

β∈Z2

ad(Qβ)βν − ha(ν) = 0 ∀ |ν| < k.

Therefore, ad satisfies the sum rules of order k. The proof is complete.

Suppose
∑
β∈Z2 a(Qβ) =

∑
β∈Z2 a(e2 + Qβ) = 1. Let b be a dual mask of a.

Construct a new sequence ad as follows:

ad(Qα) := b(Qα)−
∑
β∈Z2

a(e2 +Qβ −Qα)cβ , α ∈ Z2,(5.7)

and

ad(e2 +Qα) := b(e2 +Qα) +
∑
β∈Z2

a(Qβ −Qα)cβ , α ∈ Z2,(5.8)

where cβ (β ∈ Z2) are parameters such that cβ = 0 except for finitely many β.
Then it is easy to verify that ad is also a dual mask of a. This procedure is the
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so-called lifting scheme (see [26]). In order for ad to satisfy the sum rules of order
k, we choose the parameters cβ (β ∈ Z2) in such a way that (5.4) is satisfied. Let

g(µ) :=
∑
β∈Z2

cβ(Q−1e2 + β)µ, |µ| < k.(5.9)

Then by (5.4) and (5.8) we have

ha(µ) =
∑
α∈Z2

ad(e2 +Qα)(Q−1e2 + α)µ

=
∑
α∈Z2

b(e2 +Qα)(Q−1e2 + α)µ +
∑
α∈Z2

∑
β∈Z2

a(Qβ −Qα)cβ(Q−1e2 + α)µ.

Moreover,∑
α∈Z2

∑
β∈Z2

a(Qβ −Qα)cβ(Q−1e2 + α)µ

=
∑
α∈Z2

∑
β∈Z2

a(Qβ −Qα)cβ(Q−1e2 + β − (β − α))µ

=
∑

0≤ν≤µ
(−1)|µ−ν|

µ!
ν!(µ− ν)!

∑
β∈Z2

∑
α∈Z2

a(Qβ −Qα)(β − α)µ−νcβ(Q−1e2 + β)ν

=
∑

0≤ν≤µ
(−1)|µ−ν|

µ!
ν!(µ− ν)!

∑
α∈Z2

a(Qα)αµ−ν
∑
β∈Z2

cβ(Q−1e2 + β)ν

=
∑

0≤ν≤µ
(−1)|µ−ν|

µ!
ν!(µ− ν)!

g(ν)
∑
α∈Z2

a(Qα)αµ−ν .

Therefore, g(µ) (|µ| < k) are determined by the recursive relation

g(µ) = ha(µ) −
∑
β∈Z2

b(e2 +Qβ)(Q−1e2 + β)µ

−
∑

0≤ν<µ
(−1)|µ−ν|

µ!
ν!(µ− ν)!

g(ν)
∑
β∈Z2

a(Qβ)βµ−ν .
(5.10)

Let g(µ) (|µ| < k) be given in (5.10). Choose parameters cβ (β ∈ Z2) such that
(5.9) holds. Let ad be given by (5.7) and (5.8). Then from the above discussion it
is easy to see that ad satisfies (5.4). By Theorem 5.1, ad satisfies the sum rules of
order k. Therefore, to obtain a dual mask ad of a satisfying the sum rules of order
k, we only need to choose the parameters cβ (β ∈ Z2) in such a way that (5.9) is
satisfied.

Let a be a primal mask which is symmetric about the origin. Given a dual mask
b of a, then without loss of generality we may assume that b is also symmetric about
the origin.

Let cβ = dγ (γ = e2 +Qβ, γ ∈ Gk,k−1), where the set Gk,k−1 is defined in (3.2).
The following result gives a particular choice of the parameters dγ (γ ∈ Gk,k−1)
such that the dual mask ad satisfies the sum rules of order 2k.

Theorem 5.2 (A CBC algorithm for primal masks symmetric about the origin).
Let Q be the dilation matrix in (1.1). Let e2 = (0, 1)T . Let a be a finitely sup-
ported primal mask on Z2 such that

∑
β∈Z2 a(Qβ) =

∑
β∈Z2 a(e2 + Qβ) = 1 and

a(−β) = a(β) for all β ∈ Z2. Let b be a dual mask of a with the dilation matrix Q
such that b is symmetric about the origin.
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1. Let k be a fixed positive integer. Compute the values ha(µ) for µ ∈ Z2
+ and

|µ| < 2k by the recursive formula (5.3);
2. Compute the values g(µ) for µ ∈ Z2

+ and |µ| < 2k by the recursive formula
(5.10);

3. Then there is a unique solution {dγ : γ ∈ Gk,k−1} to the linear system of
equations ∑

γ∈Gk,k−1

dγ(Q−1γ)µ = g(µ) ∀ µ ∈ Γ0
k,

where the set Γ0
k is defined in (3.1) and the set Gk,k−1 is defined in (3.2);

4. Construct a mask ad coset by coset as follows:

ad(Qα) := b(Qα)−
∑

γ∈Gk,k−1

a(γ −Qα)dγ , α ∈ Z2,

and

ad(e2 +Qα) := b(e2 +Qα) +
∑

γ∈Gk,k−1

a(γ − e2 −Qα)dγ , α ∈ Z2.

Then the mask ad is a dual mask of the given mask a with the dilation matrix Q (or
the dilation matrix T ), ad satisfies the sum rules of order 2k and ad is symmetric
about the origin.

Proof. From the definition of ad in Step 4, it is easy to verify that ad is a dual mask
of a with the dilation matrix Q. To prove that ad satisfies the sum rules of order
2k, from the preceding discussion, it suffices to verify∑

γ∈Gk,k−1

dγ(Q−1γ)µ = g(µ) ∀µ ∈ Z2
+, |µ| < 2k.(5.11)

Note that the existence and uniqueness of a solution to the linear system of equa-
tions in Step 3 are guaranteed by Lemma 3.1. Since a(β) = a(−β) and b(β) = b(−β)
for all β ∈ Z2, it is easy to verify that ha(µ) = 0 and g(µ) = 0 for all µ ∈ Z2

+ such
that |µ| is an odd integer.

Note that the set Gk,k−1 is symmetric about the origin and g(µ) = 0 for all
µ ∈ Z2

+ such that |µ| is an odd integer. The uniqueness of the solution to the linear
system of equations in Step 3 implies that d−γ = dγ for all γ ∈ Gk,k−1. Therefore,∑

γ∈Gk,k−1

dγ(Q−1γ)µ =
∑

γ∈Gk,k−1

d−γ(−1)|µ|(Q−1γ)µ

= (−1)|µ|
∑

γ∈Gk,k−1

dγ(Q−1γ)µ, µ ∈ Z2
+.

It follows that∑
γ∈Gk,k−1

dγ(Q−1γ)µ = 0 = g(µ) ∀µ = (0, 2j − 1), j = 1, · · · , k.

Hence, (5.11) follows at once from the above equality and the equality in Step 3.
By the uniqueness of the solution in Step 3, ad is symmetric about the origin.
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Figure 7. The scaling function φQg2
, the wavelet function ψ, the

dual scaling function φQ(g2)s4
, and the dual wavelet function ψd.
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Remark. If a is a quincunx interpolatory mask, then we always take b = 2δ by
default in Theorem 5.2. If a primal mask a is symmetric about the origin, by (a)ok
we denote the dual mask constructed by the CBC algorithm in Theorem 5.2 such
that (a)ok satisfies the sum rules of order 2k. When a primal mask a is symmetric
about the axes x1 = 0 and x2 = 0 we may assume that the initial mask b in
Theorem 5.2 is also symmetric about the axes x1 = 0 and x2 = 0. By the uniqueness
and the symmetry of the set Gk,k−1 in Step 3, the resulting dual mask ad must be
also symmetric about the axes x1 = 0 and x2 = 0. Furthermore, when a primal
mask a is symmetric about the axes x1 = 0, x2 = 0 and the lines x1 = x2 and
x1 = −x2, we may assume that the initial mask b in Theorem 5.2 possesses the
same symmetry. We modify the dual mask ad in Theorem 5.2 as follows:

(a)sk(β1, β2) :=
[
ad(β1, β2) + ad(β2, β1)

]
/2, (β1, β2) ∈ Z2.

Then the resulting mask (a)sk is a dual mask of a such that (a)sk satisfies the sum
rules of order 2k and (a)sk is symmetric about the axes x1 = 0, x2 = 0, and the lines
x1 = x2 and x1 = −x2. In passing, we mention that the set Gk,k−1 in Theorem 5.2
can be replaced by Gk−1,k.

Let us apply Theorem 5.2 to the quincunx interpolatory masks hr and gr. From
Theorem 5.2, we see that each (hr)ok is supported on [2 − k − r, r + k − 2] ×
[−k − r, r + k] and satisfies the sum rules of order 2k. Similarly, each (gr)sk is
supported on [−k − r, r + k]2 and satisfies the sum rules of order 2k. By com-
putation we find that the symbols of all the dual masks in Tables 3 and 4 are
nonnegative.
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Table 3. The L∞ critical exponents of several dual refinable functions φT(hr)ok
and φQ(hr)ok

for r = 1, · · · , 4 and
k = 2, · · · , 8 which are constructed by the CBC algorithm in Theorem 5.2.

k ν∞(φQ(h1)ok
) ν∞(φQ(h2)ok

) ν∞(φQ(h3)ok
) ν∞(φQ(h4)ok

) ν∞(φT(h1)ok
) ν∞(φT(h2)ok

) ν∞(φT(h3)ok
) ν∞(φT(h4)ok

)
2 -0.53805 -0.54301 -0.45331 -0.41055 0.10754 0.19197 0.28003 0.32808
3 -0.00096 0.04915 0.021589 0.138024 0.36007 0.58894 0.61981 0.74430
4 0.522967 0.54310 0.587553 0.563213 0.68497 0.99869 1.08635 1.10283
5 1.029502 1.06957 1.085242 1.097385 1.04842 1.41497 1.54166 1.58682
6 1.520080 1.54341 1.527047 1.582049 1.43423 1.83910 1.97555 2.05464
7 1.997513 2.03018 2.015643 2.024425 1.83447 2.26557 2.41533 2.50322
8 2.464020 2.48740 2.469668 2.428527 2.24498 2.69479 2.85427 2.93059

Table 4. The L2 and L∞ critical exponents of several dual refinable functions φQ(gr)sk
for r = 1, · · · , 4 and k = 2, · · · , 8

which are constructed by the CBC algorithm in Theorem 5.2.

k ν2(φQ(g1)sk
) ν2(φQ(g2)sk

) ν2(φQ(g3)sk
) ν2(φQ(g4)sk

) ν∞(φQ(g1)sk
) ν∞(φQ(g2)sk

) ν∞(φQ(g3)sk
) ν∞(φQ(g4)sk

)
2 0.31415 0.34139 0.49278 0.58373 -0.61191 -0.56260 -0.39550 -0.30636
3 0.91646 0.93317 0.93619 1.08366 0.048833 0.09230 0.10659 0.26887
4 1.47539 1.44569 1.48384 1.48143 0.666544 0.65846 0.71084 0.71639
5 2.00516 1.96174 1.98167 1.99754 1.247190 1.22045 1.25623 1.28161
6 2.51561 2.44983 2.43792 N/A 1.798678 1.74645 1.75268 1.80521
7 N/A N/A N/A N/A 2.327900 2.26061 2.25877 2.29371
8 N/A N/A N/A N/A 2.839886 2.75635 2.74558 2.75035
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