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Abstract

The total variation model of Rudin, Osher, and Fatemi for image denoising is con-
sidered to be one of the best denoising models. In the past, its solutions were based on
nonlinear partial differential equations and the resulting algorithms were very complicated.
In this paper, we propose a fast algorithm for the solution of the total variation model.
Our algorithm is very simple and does not involve partial differential equations. We also
provide a rigorous proof for the convergence of our algorithm.
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A Fast Algorithm for the Total Variation Model of Image Denoising

§1. Introduction

In this paper, we propose an efficient algorithm for the solution of the total variation
model of Rudin, Osher, and Fatemi [5] for image denoising. We also provide a rigorous
proof for the convergence of our algorithm.

An image is regarded as a function

w:{l,...,N} x{1,...,N} = 1R,

where N > 2. Suppose u € RY .= RN g g <p< oo, let
1/p
= (X WGl
1<, j<N

and let |lul|oo := maxi<; j<n |u(i,j)|. We use V, to denote the difference operator given
by V,u(l,j)=0for j=1,...,N and

Vouli,j) =u(i,j) —u(i—1,5), i=2,...,N,j=1,...,N.

Then V, is a linear mapping from RY to RY. Similarly, V, is the difference operator
from RY to RN given by V,u(i,1) =0fori=1,..., N and

Vyu(i,j) =u(i, j) —u(i,j—1), i=1,...,N,j=2,...,N.
The total variation of u is represented by

Vaullr + [[Vyul1.

Let f € RN be an observed image with noise. We wish to recover a target image
u from f by denoising. The anisotropic TV (Total Variation) model for denoising can be
formulated as the following minimization problem:

, 7
min (|| Vaully + [|Vyulls +§Ilu—f||§], (L.1)

where p is an appropriately chosen positive parameter.

This motivates us to consider the general minimization problem of a convex function
on the n-dimensional Euclidean space IR". Let F : IR™ — IR be a convex function. A
vector g in IR" is called a subgradient of F at a point v € R" if

E(u) — E(w) —{(g,u—v) >0 VuelR" (1.2)
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The subdifferential 0F(v) is the set of subgradients of £ at v. It is known that the
subdifferential of a convex function at any point is nonempty. Clearly, v is a minimal point
of E if and only if 0 € 9E(v). If this is the case, we write

v = arg mum{E(u) }.

If E is given by E(u) = |u| + 3(u — ¢)?, u € R, where A > 0 and ¢ € IR, then
0 € OFE(v) if and only if v = shrink(c,1/)\), where

c—1/X forec>1/),
shrink(c,1/\) := ¢ 0 for =1/ A <c<1/A,
c+1/x fore< —1/A

For A > 0 and ¢ € IR, we define

/A fore>1/A,
cut(e,1/X) :== ¢ ¢ for —1/A <e <1/,
—1/\ fore< —1/A.

Clearly, shrink(c,1/\) + cut(c,1/A) = ¢. Let v = (v1,...,v,) and ¢ = (c1,...,¢,) be
two vectors in IR™. We write v = shrink(c,1/X) if v; = shrink(c;,1/\), i = 1,...,n.
Analogously, we write v = cut(c, 1/A) if v; = cut(c;, 1/N), i=1,...,n.

Suppose E is the function on IR" given by

)\ n
E(u) = full + 5 [lu—cllz, ueR",

where A > 0 and ¢ = (¢1,...,¢,) € R". Given v = (v1,...,v,) € IR", we see that
0 € OE(v) if and only if v = shrink(c,1/)).

Here is an outline of the paper. In Section 2, we propose a simple algorithm for the
solution of the total variation model (1.1) and demonstrate that our algorithm is very
efficient. In Section 3, we give a rigorous proof for the convergence of our algorithm.

§2. A Simple Algorithm

In order to find the unique solution v* to the minimization problem:

, f
min[[[Vyull + [[Vyull + 3 llu - 3],

we propose the following iteration scheme: Set b0 := 0, bg := 0, and u' := f. For
k=1,2,..., let
bF = cut(Vuf 4+ 0571 1/0), (2.1)
bg = cut(V,u® + bgfl, 1/A), (2.2)
A
ub = f — ;(Vfb’; + V0%, (2.3)



where V1 and Vg are the conjugate operators of V, and V,, respectively. More precisely,

V7T is the linear operator on R™ ’ given by

—w(2,7) if i =1,
Viw(i,j) = w(i,j) —w(+1,5) ifi=2,...,N—1,
w(N, j) if i = N,

and Vg is the linear operator on RN given by

—w(i,?2) ifj =1,
Vyw(i,j) = q w(i,j) —w(,j+1) ifj=2,...,N—1,
w(i, N) if j = N.

Let A := —Vng—ngy. Then A is the discrete Laplace operator. For 1 <i,j < N,
_Au(l7j) = 4%(1,]) - u<l + 17]) - U’(Z - 17]) - u(lvj + 1) - U(ZJJ - 1)

Moreover, —Au(1,75) = 3u(l,j) —u(2,j) —u(l,j — 1) —u(l,j+ 1) for 1 < j < N and
—Au(1, 1) =2u(1,1) — u(1,2) — u(2, ) When ¢ € {1, N} or j € {1, N}, similar formulas
are available for —Au(, 7).

The main result of this paper is the following theorem, which will be proved in Sec-
tion 3.

Main Theorem. Fork =0,1,..., Iet b* b u**1 be given by the iteration scheme (2.1),

X’ y7

(2.2) and (2.3). If 0 < A/ < 1/8, then limy oo uf = u*.

In the past, solutions of the TV model were based on nonlinear partial differential
equations and the resulting algorithms were very complicated. A breakthrough was made
by Goldstein and Osher in [2]. Using the split Bregman method, they obtained the following
iteration scheme: Set b)) = bg := 0 and 00 = v :=0. For k =0,1,..., let «*! be the
solution of the equation

(b= MD)W = pf + AV (08 — b5) + AV (0f — bF).
Update vft!, v’;+1, bEL and bg“ as follows:

"= shrink(V a4+ 08 1/0),
vf“ = shrink(V, u Tt + b’y“, 1/X),
bk—|—l — bk . (,Uk—l—l . Vmuk+1)

X
k+1 ._ 1k k+1 k+1
by Tt i= by — (v = Vyut ).
Note that their algorithm still requires solving a partial difference equation in each iteration
step. In comparison with their algorithm, our algorithm does not involve partial differential
or difference equations.



Let us compare the actual implementation of our algorithm with the algorithm of
Goldstein and Osher. In what follows, all the images considered have the size 512 x 512
and the grey-scale in the range between 0 and 255. A Gaussian noise with the normal
distribution N(0,02) is added to the original image. We choose o = 25. Let u be the
original image, and let f be the noised image. By u**! we denote the result after k
iterations.

For image processing, the image quality is usually measured in terms of Peak Signal-
to-Noise Ratio (PSNR), which is defined by

PSNR = 20log,,(M/E),

where M is the maximum possible pixel value of the image and E is the mean squared
error. In our case, M = 255 and E = ||u**! — u|5/512.

We tested both algorithms on four images: Lena, Barbara, Boat, and Goldhill. With
o = 25, the PSNR for each noised image is about 20.14. In the following table, the PSNR
values are listed after k iterations of our algorithm (JZj) and the algorithm of Goldstein
and Osher (GOg). The CPU time (in seconds) needed is listed in the last column.

Lena | Barbara | Boat | Goldhill time
JZ15 30.23 25.73 28.21 28.61 0.095s
GOq5 30.22 25.73 28.19 28.61 0.205s
J Z150 30.23 25.73 28.18 28.61 0.953s
GO150 | 30.23 25.73 28.18 28.60 2.047s

Clearly, 15 iterations are good enough. Moreover, our algorithm requiresless than one
half of the time needed for the algorithm of Goldstein and Osher.

§3. Convergence of the Algorithm

In this section, we complete the proof of the Main Theorem. Our proof is motivated
by the Bregman method (see [1]). Some basic properties of the Bregman iteration were
established in [4]. A fundamental criterion for convergence of the Bregman iteration was
given in [3, Theorem 2].

We observe that g+ AA is a real symmetric linear operator on RrY. Suppose that 7
is an eigenvalue of the operator u + AA. Then 7 is a real number. We will show 1 > 0,
provided 0 < A\/p < 1/8. There exists a nonzero vector u € R such that (L+AA)u = nu.
It follows that (@ — n)u = —AAu. Let m = ||lu|lcc = max;<; j<n |u(i,j)|. There exist
i0,jo € {1,..., N} such that |u(ig, jo)| = m. If n <0, then (1 —n)u(io, jo)| > pwm. On the
other hand, |[—AAu(ig, jo)| < 8\m. Consequently, ym < 8\m. Since u > 8\ > 0, we must
have m = 0. In other words, u = 0. This shows that any eigenvalue of y + AA is positive.
Therefore, p + AA is positive definite. Let B be the unique positive definite operator on
RY such that B2 = 4 AA.

We shall demonstrate that the algorithm given by (2.1), (2.2), and (2.3) has the
alternative interpretation described as follows.
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Set v) = o)) :=0, b) =b) :=0, and u' := f. For k =1,2,..., let

Yy
k : A k k—1|2

vy = argmm{“v”l + 5”1} — Vu™ — b HQ}, (3.1)

ko . A Vouk — pE1? 3.2

v, = argm@m{Hle + §Hv — Vyu® — by HQ}, (3.2)

b= VuP o — ok (3.3)

bl = Vyu* + byt — ol (3.4)

and

Crl A 2 A 2
W = argmin{ SIB(u— NI~ (B(uF = ), u— )+ ok = Vaul[y + 5|0k = 7y}
(3.5)
In the following two lemmas we shall show that the sequences (bﬁ)kzo,lw, (b’;)kzo,l’._,,

and (uF+1),—g 1 . satisfy (2.1), (2.2), and (2.3). These results together with Lemma 3 will
enable us to prove limy_,o u* = u*.

Lemma 1. Fork =1,2,..., let v*, v;j, bk, b’?j, and u*t! be given by the iteration scheme

(3.1) to (3.5). Then limy_ oo (uf*t — u¥) = 0. Moreover,
b = cut(Vou® + 0571, 1/0) and  bY = cut(Vyu® + 0571 1/0). (3.6)
Proof. It follows from (3.1) and (3.2) that

o = shrink(Vyu® + 0571 1/0) and  of = shrink(V, u® + béj_l, 1/N).

y:

This in connection with (3.3) and (3.4) yields (3.6). Consequently, |[b*| < 1/X and
168 ][oo < 1/ for k=1,2,....

Write G(v) := ||v]|; for v € R, Let gk = \bF and g]zj = )\bz. It follows from (3.3)
and (3.1) that
gF = gFt = AwF - Vb)) = AP - VuF = b € 0G(0F).

x

Hence, gF — A(vf ! — vV, uf*1) € OG(vF+!) and thereby
A
o™t = argmin{ ol — (g5, v — %) + Sl = Voub 3. (3.7)

Similarly,
. A
v’y’“ L= argmvln{Hle — (g’;,v — v{j} + §Hv — Vyuk 1||§} (3.8)

It follows from (3.7) that

A A
ozl = gz ve ™ = o) + Slloe ™ = Veut S < floglh + Sk = Veu™ 3,

x x
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Since g¥ € 0G(vF), by (1.2) we have |[v**||; — ||[vF|1 — (g¥, vE+L —o¥) > 0. Hence,

“kHHz < A ok — VxUkHH; k=1,2,.... (3.9)

)\vk+1_v 2”:1:

As+ — v,
For the same reason, we deduce from (3.8) that

A

2k~ v

A
2117y yuk+1H§ <5

Slles = vyl k=12 (3.10)

Y

By (3.5) we see that the following inequality is valid for all u € RY g

1 A A
SIBGH = )3 = (B2 — 1), ubt — )+ Sk = Vouk B+ 2ol — 7t 3

A A
< SIBu— )3 = (B — ) u— )+ Sk = Voul + 5[0k - Vyul3

In particular, choosing v = u* in the above inequality, we obtain

1 A A
SIBOAT = P — (B — £), B — b)) + 3~ Vo3 4 2 ol — V13
< 1 B k 2 A k \V4 k2 A k \V4 k2
< SIBOE — PI3+ Sl — T3 4 2 ok — 7,3
Note that
1 1 1
§||B(uk+1 - NIz - §||B(uk — NI = (B* = f), Bt —u¥)) = §||B(uk+1 —uP)[3.

Hence, we deduce that

A
Dok - Vb3 <y, k=12,

1 A
SUBGHHY — ah)3 + Sk — Vou 13 + 2

where \ \
o= S0k = VeI + Sk — TyutlB. (3.11)

This inequality together with (3.9) and (3.10) gives
1
SIBE T = w5+ yepr < e (3.12)

Thus, 71 > 72 > --- and v > 0 for all k. Hence, limy_. . 7% exists. Furthermore, it
follows from (3.12) that

1
SIBOA —ub)3 < e — e
Since B is positive definite, we conclude that limy . (u**! — u*) = 0. []

In the following lemma we establish boundedness of relevant sequences.
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Lemma 2. Fork =1,2,..., let v%, ’UIyC, b’;, b’;, and u**t1 be given by the iteration scheme

(3.1) to (3.5). Then all the sequences (v¥)x—12 (v’;)k:1727,,_, (W) k=12.., (b’;)k:m,_”,
and (Uk)k;zl’g’_. are bounded. Furthermore,

ubtt = f — 2(Vfb’; + VL b%). (3.13)

Proof. It was proved in Lemma 1 that [[Ab¥ [ <1 and [|Ab}|| < 1. For the other parts
of the lemma, we deduce from (3.5) that

B> (Wt — f) = BX(u* — f) = AV (vf — Vou!T) = AV (v — V,ut ) = 0.

Consequently,
B2 (uPt —uF) = N(VE + ngéj) + MAyFtL

Recall that B? = u + AA. Hence,
p(uF Tt —uF) £ XA — NAWP = A(VIoE + ngly“) + AAyFTL
It can be rewritten as
p(uh Tt —uF) = AVE(0F — VouF) + AV (0F — V).
By (3.3) and (3.4) we have v} — V uF = b5~1 — b and v} — V,u¥ = b}~! — bl Hence,
p(uftt — by = AVEOET = o) + AV (0T — b)),

It follows that

k
D n T =) = 3 VIO = b)) + AV (7 - b)),

j=1 j=1

that is,
p(utt — f) = =AVIbE — AV b

This establishes (3.13). Since [|Abf||oc < 1 and [[AbE[oc < 1, we see that the sequence
(u¥)j=1 2.... is bounded. Moreover, by (3.3) and (3.4) we have

P = VuP + (0" — ) and v’; =V, u + (blzj_l - b’;)
Therefore, the sequences (v¥)g—1 .2, . and ('UZ)]C:LQ’“. are also bounded. ]

In the proof of the following lemma, we employ the technique used in [4, Prop. 3.2].
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Lemma 3. Fork =1,2,..., let v*, ’UIyC, b’;, b’;, and u**t1 be given by the iteration scheme
(3.1) to (3.5). Then

lim (v¥ —V,u") =0 and lim (vl; — V,u") = 0.

k— oo k—o0
Proof. For G(v) := ||v|1, recall that g/ = \bJ, € IG(v)), j = 1,2,.... It is easily seen

that , .
[G(v) = Gui™) — (ght v —vi™)]
— [G(v) = G(vd) — (gh,v —v])]
+[G(ol™) = G(v]) — (g, 03" —v])]
I — ot

= (gl —gi" v
Since G(vitl) — G(vi) — (gZ,vitl —vi) > 0, we have
(g2 — g2 v — vl > ol — (g v — ol + ol + (gl v —vd). (3.14)
But (3.3) implies g/ — g/t = A(vit! — V,u/T1). Hence, by (1.2) we have

7

A ; 2 A ; ; 2 i N2
EHv_vIu‘jﬂHz_EH%Jﬂ —V$u]+1H2— —gt v -0t >0 voeRY.
Combining the above inequality with (3.14), we see that for all v € RY 2,
A L2 Ay i J+1 )2 j+1 AR IO TSI J oy
EHU_vﬂCU’ H2_§||vx —Vau HQ > _”Uw H1_<g:c y U=V >+HU:CH1+<g:cvv_U:c>'
Choosing v := V,u/T! in the above inequality, we obtain
Sleitt = Va5 < ot + (g, Vet — 03t — vl — (gh, Vel = vd).
With 8, := (g, V,u? — vl), the above inequality can be rewritten as
Ao - . . . .
Sl = Va2 < (g s = o) + (B — 85) — ol Vo™ =),

Consequently, for 1 < m < k, we have

k-1 k—1
Sttt = Ve S < ST I~ odlh) + (Bran = ) = (g, Valw ™ — )]

j=m Jj=m

It follows that

k—1 E—1
A 12 . | | |
Sled ™ = Ve < (ol = 10 1) + (Bk = Bm) = Y (g4, Va(u? T — ).

Jj=m j=m



By Lemma 2, the sequences (u?);j—12.., (v)j=12 . and (g2);—12. . are bounded. Hence,
there exist positive constants C7; and C5 independent of & and m such that

k—1
Ao .
§vaj+1 —unﬂ'lH; < C1 + Cy(k — m)n, (3.15)
j=m
where 7, := sup;s,, [/t — u/|2. By Lemma 1, we have limp .oo?m = 0. In an

analogous way, we derive that

w
H

%Hvi“ — Vyuj“Hz < C1 + Co(k — m)ny,. (3.16)

I
:

Let v, (k=1,2,...) be defined as in (3.11). Adding (3.15) and (3.16) together gives

k—1
Z Yit1 < 2C1 + 202 (k — m)n,

j=m

By (3.12) we have v, <, for j < k. Hence, (k —m)vy, < 2C; 4+ 2C3(k — m)n,,, that is,

2C
Ve < kz—jn + 2021y,

Choosing m to be the integer part of k/2, we obtain limy_,o 7 = 0. This completes the
proof of the lemma. ]

We are in a position to prove the Main Theorem.
2
Let F(u) := (u/2)||u — f||3. Then 0F (u) = pu(u — f). For w € RN we have

F(u*™ w) = F(u"™) — (u(u*™ = f),w) > 0.
By Lemma 2, —u(uf*t — f) = AVIDE + AVIbE. Hence,
FF +w) — F(uP) + (A, Vow) + (A, Vyw) > 0. (3.17)
Recall that G(v) = ||v||1, Ab* € G (vF) and )\bk € 0G(v ) Consequently,
lvi + Vowlls = lloglls = (A6, Vow) > 0, (3.18)

and
loy + Vywll = [loglh = (Aby, Vyw) > 0. (3.19)

Adding (3.17), (3.18), and (3.19) together gives
lvg + Vowlls = ozl + oy + Vywll = [lvgll + F(u* +w) = F@*) > 0,
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that is,
[l + llog Il + FuM*) < Jlog + Vewlh + [loy + Vywll + F* +w). (3.20)

Suppose that (kj);j=1,2,.. is an increasing sequence of positive integers such that the se-
quence (u"s )j=1,2,... converges to the limit 4. By Lemma 1, limg o0 (uFT1 —u¥) = 0. Hence,
lim;_ ukitt = 4. Moreover, Lemma 3 tells us that

lim % = lim [(v';j — V,uh) + Vmukﬂ'} =Vt and lim v’;j = Vyu.

J—00 v J—00 Jj—o0

Replacing k by k; in (3.20) and letting j — oo, we obtain
|Vetllr + | Vytls + F(a) < [[Va(a+w)|1 + || Vy(a+w)| + F(a + w).

This is true for all w € RY . On the other hand, u* is the unique solution to the
minimization problem (1.1). Therefore, we must have @ = u*. Since (u¥)g—12,. . is a
bounded sequence, we conclude

lim v = u*.

k—oo

This completes the proof of the Main Theorem.

References

[1] L. Bregman, The relaxation method of finding the common points of convex sets and
its application to the solution of problems in convex optimization, USSR Computa-
tional Mathematics and Mathematical Physics 7 (1967), 200-217.

[2] T. Goldstein and S. Osher, The split Bregman method for L1 regularized problems,
UCLA CAM Report (08-29).

3] R. Q. Jia, H. Q. Zhao, and W. Zhao, Convergence analysis of the Bregman method
for the variational model of image denoising, preprint.

[4] S. Osher, M. Burger, D. Goldfarb, J. J. Xu, and W. T. Yin, An iterative regularization
method for total variation-based image restoration, Multiscale Model Simulation 4
(2005), 460-489.

[5] L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal
algorithms, Phys. D 60 (1992), 259-268.

11



