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§1 Introduction

By a trigonometric polynomial on IRs we mean a function of the form

f(w) =
∑

α∈ZZs

aαe
iα·w, w ∈ IRs

where the coefficients aα (α ∈ ZZs) of complex numbers are assumed to be zero except on

some finite subset of ZZs. The purpose of this paper is to prove the following result:

Theorem 1.1. Let F (w) := (f1(w), . . . , fn(w)), w ∈ IRs be a vector whose coordinates

are trigonometric polynomials having no common zeros on IRs. If

s < 2n− 1,

then there exists an n× n matrix M(w) = (Mjk(w)), j, k = 1, . . . , n such that every entry

of M(w) is a trigonometric polynomial, the first row of M(w) is given by

M1k(w) = fk(w), 1 ≤ k ≤ n,

and

det M(w) 6= 0, w ∈ IRs.
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In the language of [4] this means that the trigonometric polynomials f1(w), . . . , fn(w)

are extensible over IRs when s < 2n− 1 if and only if they have no common zeros on IRs.

By extensibility we mean the existence of a nonsingular matrix M(w) of trigonometric

polynomials whose first row is f1(w), . . . , fn(w).

It has been observed recently in [4] and [5] that decomposition of multivariate wavelet

spaces hinges upon extensibility of maps defined on either IRs or (C\{0})s, complex s-

space minus its coordinate axes. Thus the above result has direct application to wavelet

decomposition which we will discuss at the end of the paper.

§2 Extensibility of Hölder Maps

In this section we prove a result which subsumes Theorem 1.1. Let Ω be a subset of

IRs. We say that a map F : Ω → Cn is Hölder continuous provided there is some ρ ∈ (0, 1]

and constant κ > 0 such that

|F (x)− F (y)| ≤ κ|x− y|ρ, x, y ∈ Ω. (2.1)

The absolute value sign above represents any norm defined on either IRs or Cn whichever

is appropriate.

Theorem 2.1. Let Ω be any compact subset of IRs and F a Hölder continuous map from

Ω into Cn\{0} with s < 2n− 1. Then there exists an n× n nonsingular matrix M(w) of

complex-valued continuous functions on Ω such that the first row of M is F .

At the end of the proof of this result we will explain how it yields Theorem 1.1.

The proof of Theorem 2.1 is divided in two parts. The first part concerns some familiar

facts about Householder transformations, cf. [6]. For its statement we first establish some

notational conventions.

For the complex inner product of vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Cn

we use

(x, y) :=
n∑

j=1

x̄jyj ,

and for the euclidean norm |x| :=
√

(x, x). We use Sn−1
C for the complex n−1 sphere, that

is, the set of all vectors x ∈ Cn such that |x| = 1. The “north pole” of Sn−1
C is chosen to
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be the vector e = (1, 0, . . . , 0). Also, we use tensor product notation for rank one matrix

(x⊗ x)jk := xj x̄k, j, k = 1, . . . , n.

The matrix x ⊗ x is clearly complex hermitian. Generally, the hermitian transpose of an

n× n complex matrix A is denoted by AH .

Proposition 2.1. For every x ∈ Sn−1
C \{e} we define

y =
e− x√

2(1−Re x1)
, x = (x1, . . . , xn),

and

ζ =
2(1−Re x1)

1− x1
. (2.2)

Then the matrix

Qx = I − ζy ⊗ y

has the following properties:

(i) Qxx = e;

(ii) Qxv = v for any v ∈ Cn with (v, e) = (v, x) = 0;

(iii) QxQ
H
x = QH

x Qx = I = the identity matrix;

(iv) |det Qx| = 1.

Remark 2.1. Note that both y and ζ are continuous functions on Sn−1
C \{e}. Moreover,

whenever x is real then both y and ζ are real. In fact it is obvious from the definition of

ζ that it must be equal to two in this case.

Proof: For the proof of (i) we note that

Qxx = x− ζy(y, x)

= x− 2(1−Rex1)
1− x1

(x1 − 1)(e− x)
2(1−Rex1)

= x+ e− x = e.

The second claim is equally simple to see since y is chosen to be in the span of e and

x. For the third claim we note first that ζ satisfies the equation

ζ + ζ̄ = |ζ|2 (2.3)
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which follows from the definition (2.2).

Since

QH
x = I − ζ̄y ⊗ y

we have
QxQ

H
x = I − ζ̄y ⊗ y − ζy ⊗ y + |ζ2||y|2y ⊗ y

= I + (|ζ|2|y|2 − ζ − ζ̄)y ⊗ y.
(2.4)

However,

|y|2 =
|1− x1|2 + |x2|2 + · · ·+ |xn|2

2(1−Rex1)

=
1 + |x1|2 − 2Rex1 + 1− |x1|2

2(1−Rex1)
= 1

and so by (2.3) and (2.4) we obtain (iii).

The last claim follows immediately from (iii). Thus the proposition is established.

The next fact we need is the following “dimension” result.

Proposition 2.2. Let f be a Hölder map from some subset Ω of IRm into IRn. If n > m,

then f(Ω) has Lebesgue measure zero in IRn.

Proof: For the proof of this fact we make use of Hausdorff measure of a set A ⊆ IRm.

We recall this concept from [1, Chap.10]. For every α > 0 and ε > 0 let

H(ε)
α (A) = inf

{ ∑
k

δ(Ak)α : δ(Ak) ≤ ε
}
.

Here δ(Ak) denotes the diameter of Ak, and the infimum is taken over all countable covers

of the set A. Then H(ε)
α (A) is a nondecreasing function of ε whose limit as ε→ 0 is called

the Hausdorff measure of A, which we shall denote by Hα(A). It is known that there is a

constant γn > 0 such that γnHn is Lebesgue measure on IRn (see [1, p. 325]).

Using the inequality (2.1) we see that

H(ε′)
α (f(Ω)) ≤ H(ε)

α (Ω)

where ε′ := κερ and so

Hα(f(Ω)) ≤ Hα(Ω). (2.5)
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It is easily seen that Hn(Ω) = 0 for any subset Ω of IRm, m < n. Hence by (2.5),

Hn(f(Ω)) = 0. This shows that f(Ω) has Lebesgue measure zero in IRn, and proves the

result.

Remark 2.2. Proposition 2.2 is a variation of Sard’s Theorem. See, for example,

[2, pp. 204–205], in which the corresponding result was proved for smooth maps. However,

the above proposition is not true for continuous maps. It is well-known, as a special case

of the Hahn-Mazurkiewicz theorem, cf. [3, p. 129] that there is a continuous map of the

unit interval Ω = [0, 1] ⊂ IR onto the n-cube [0, 1]n ⊂ IRn for any n.

Propositions 2.1 and 2.2 are the main facts we need to prove Theorem 2.1.

Proof of Theorem 2.1: We first scale the map F so that its image is contained in Sn−1
C

by setting

G = F/|F |.

We embed Sn−1
C into S2n−1

IR and express G in the form

G = (g1, . . . , g2n)

where g1, . . . , g2n are real-valued continuous maps on Ω. Since Ω is compact and |F | > 0

on Ω it follows that G is Hölder continuous. Specifically, we have

|G(x)−G(y)| ≤ 2|F (x)− F (y)|/|F (y)|,

for any x, y ∈ Ω. Next, we trim the map G to its first 2n− 1 coordinates and define

G0 = (g1, . . . , g2n−1).

Since s < 2n − 1, Proposition 2.2 applied to G0 tells us that G0(Ω) has measure zero in

IR2n−1. In particular, G0(Ω) is not the unit ball in IR2n−1. Hence we conclude that there

is a point x0 ∈ Sn−1
C such that x0 /∈ G(Ω). We wish to arrange x0 to be the north pole

of Sn−1
C so that we can apply Proposition 2.1. If indeed we are fortunate to have x0 = e,

there is nothing to do. Otherwise, we consider the map

GQ := Qx0G (2.6)
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and note that the north pole is omitted from the range of GQ on Ω. We now consider

the n × n matrix QGQ(w) (w ∈ Ω). According to Proposition 2.1 the entries of QGQ
are

continuous functions on Ω and QGQ
is everywhere nonsingular on Ω. Moreover

QGQ
GQ = e,

and so GQ = QH
GQ
e; that is, GQ is the first column of QH

GQ
. To get back to the map

F we note that F = |F |QH
x0GQ by (2.6). Hence the matrix M := |F |QH

x0QH
GQ

has the

vector F as its first column. Thus M t, the transpose of M , satisfies all the requirements

of Theorem 2.1, thereby completing the proof.

The following version of Theorem 1.1 will be the one used later for wavelet decompo-

sition.

Corollary 2.1. Let F (w) := (f1(w), . . . , fn(w)), w ∈ IRs be a vector whose coordinates

are trigonometric series

fk(w) =
∑

α∈ZZs

ak
αe

iα·w, w ∈ IRs

such that F (w) ∈ Cn\{0} for all w ∈ IRs. If

s < 2n− 1

and for some ρ > 0, ∑
α∈ZZs

|ak
α||α|ρ <∞, k = 1, . . . , n,

then there exists an n× n matrix M(w) = (Mjk(w)), j, k = 1, . . . , n such that each of the

entries Mjk(w), 2 ≤ j ≤ n, 1 ≤ k ≤ n is a trigonometric polynomial, the first row of M(w)

is given by

M1k(w) = fk(w), 1 ≤ k ≤ n,

and

det M(w) 6= 0, w ∈ IRs.

Proof: Our condition on the coefficients of the trigonometric series ensure that the map

F is Hölder continuous, see (2.1). Let C2π denote the Banach space of all continuous
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2π-periodic functions equipped with the maximum norm. By Theorem 2.1 there exists

an n × n nonsingular matrix M(w) of complex-valued continuous functions on IRs such

that the first row of M is F . Since every component of F is in C2π, from the proof of

Theorem 2.1 we see that M can be made in such a way that all its entries lie in C2π. As is

well-known trigonometric polynomials are dense in C2π and we may approximate all the

entries in M(w), except in the first row, arbitrarily closely by trigonometric polynomials.

In this fashion we create a matrix near M(w), all of whose entries except in the first row

are trigonometric polynomials. This proves Corollary 2.1, from which Theorem 1.1 is easily

derived.

Next we note without proof the following versions of Theorem 2.1 and Theorem 1.1

for maps whose range is IRs.

Theorem 2.2. Let Ω be any compact subset of IRs and F a Hölder continuous map from

Ω into IRn\{0} with s < n − 1. Then there exists an n × n nonsingular matrix M(w) of

real-valued continuous functions on Ω such that the first row of M is F .

Theorem 2.3. Let F (w) := (f1(w), . . . , fn(w)), w ∈ IRs be a vector whose coordinates

are real-valued trigonometric polynomials having no common zeros on IRs. If

s < n− 1,

then there exists an n× n matrix M(w) = (Mjk(w)), j, k = 1, . . . , n such that every entry

of M(w) is a real-valued trigonometric polynomial, the first row of M(w) is given by

M1k(w) = fk(w), 1 ≤ k ≤ n,

and

det M(w) 6= 0, w ∈ IRs.

The proofs of these results are essentially the same as those given for Theorems 2.1

and 1.1 and therefore we omit the details.
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§3 Multivariate Wavelet Decomposition

In this section we will review and extend some of the main results contained in [3] for

the purpose of applying Theorem 1.1 and Theorem 2.3 to wavelet decomposition.

We recall the multiresolution point of view. Let T be an s× s invertible matrix with

integer entries such that the spectral radius of T−1 is less than one. Then T has the

property that for any nonempty bounded set B ⊂ IRs,

lim
j→∞

T−j(B) = {0}. (3.1)

We call T a scaling matrix. A scaling matrix determines a scaling mapping

(sc f)(x) := f(Tx), x ∈ IRs.

We also need the shift mapping

(shyf)(x) := f(x− y), x, y ∈ IRs.

We say φ ∈ L2(IRs) admits multiresolution provided the following conditions hold:

(i) There exist constants m and M , 0 < m < M , such that for all c ∈ `2(ZZs)

m‖c‖2 ≤ ‖[c, φ]‖2 ≤M‖c‖2, (3.2)

where

[c, φ] :=
∑

α∈ZZs

cαsh
αφ

and, of course, the `p and Lp norms are denoted by ‖ · ‖p.

(ii) For V k := sckV , k ∈ ZZ, where

V := V (φ) :=
{

[c, φ] : c ∈ `2(ZZs)
}
,

we have

V k ⊂ V k+1, k ∈ ZZ.

(iii)

∩k∈ZZV
k = {0}, ∪k∈ZZV k = L2(IRs). (3.3)
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Following [4], we set for any function φ on IRs

φ◦(x) :=
∑

α∈ZZs

|φ(x− α)|, x ∈ IRs

and define L2 = L2(IRs) to be the Banach space of all functions φ for which

|φ|2 := ‖φ◦‖L2([0,1)s)

is finite.

Theorem 3.1. Let T be a scaling matrix and φ a function in L2 which satisfies (3.2) for

some constants m and M . Suppose there is a sequence a = (aα : α ∈ ZZs) ∈ `1(ZZs) such

that

φ = sc[a, φ]. (3.4)

Then φ admits multiresolution.

Proof: According to Theorem 2.1 of [4]

‖[c, φ]‖2 ≤ ‖c‖2|φ|2,

so we can actually choose M = |φ|2 in the upper inequality in (3.2). According to (3.4)

we have

[c, φ] = [c, sc[a, φ]] = sc[c, [a, φ]] = sc[c∗a, φ],

where c∗a is the convolution of c and a. Generally, we have

sck[c, φ] = sck+1[c∗a, φ].

Since ‖c∗a‖2 ≤ ‖a‖1‖c‖2, (ii) follows.

To prove the first part of (iii) we suppose f has the property that scjf ∈ V 0 for all

j ∈ ZZ. Thus for each j there is a d ∈ `2(ZZs) such that scjf = [d, φ]. According to (i)

‖d‖2 ≤ m−1‖scjf‖2 = m−1n−j/2‖f‖2 (3.5)

where n = |detT |. Since for each x ∈ IRs

|[d, φ](x)| ≤ ‖d‖∞φ◦(x) ≤ ‖d‖2φ
◦(x),
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we have |scjf(x)| ≤ ‖d‖2φ
◦(x) and so for any ball B in IRs

‖f‖L2(B) = nj/2‖scjf‖L2(T−jB) ≤ nj/2‖d‖2‖φ◦‖L2(T−jB).

Combining this inequality with (3.5) gives

‖f‖L2(B) ≤ m−1‖φ◦‖L2(T−jB)‖f‖2. (3.6)

Letting j → ∞ in (3.6) and using (3.1) proves that f = 0, thereby establishing the first

part of (iii).

As for the second part of (iii) we introduce the operators Tk defined by

Tkf := sck[ssc−kf, φ], k = 1, 2, . . .

where we interpret ssc−kf as the sequence given by (ssc−kf)(α) := (sc−kf)(α), α ∈ ZZs.

For r > 0 we denote by Br the cube {x ∈ IRs : |x|∞ ≤ r}, where

|x|∞ := max{|xj | : 1 ≤ j ≤ s}, x = (x1, . . . , xs) ∈ IRs.

Suppose that f ∈ C(IRs) is supported on a cube BN for some positive integer N . Then

according to (3.2)

‖Tkf‖2 ≤ n−k/2M‖ssc−kf‖2 ≤ (n−k#(JN ))1/2M‖f‖∞, (3.7)

where #(JN ) denotes the cardinality of the set

JN := {α ∈ ZZs : |T−kα|∞ ≤ N }.

To estimate #(JN ), we observe that the sets T−k(α+[0, 1)s), α ∈ ZZs, are pairwise disjoint.

Moreover, according to (3.1) for sufficiently large k⋃
α∈JN

T−k(α+ [0, 1)s) ⊆ BN + T−k([0, 1)s) ⊆ BN+1.

For each α ∈ JN , the volume of T−k(α + [0, 1)s) is |det(T−k)| = n−k; hence it follows

from the above inclusion relation that

#(JN )n−k ≤ (2N + 2)s. (3.8)
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This together with (3.7) shows that for sufficiently large k

‖Tkf‖2 ≤ (2N + 2)s/2M‖f‖∞. (3.9)

Next, we demonstrate that Tkf converges to φ̂(0)f weakly in L2(IRs) as k → ∞,

where

φ̂(w) :=
∫

IRs

φ(x)e−iw·x dx

is the Fourier transform of φ. It suffices by (3.9) above to prove that

lim
k→∞

∫
IRs

(Tkf)(x)ḡ(x) dx = φ̂(0)
∫

IRs

f(x)ḡ(x) dx

for any function g in the Schwartz class S(IRs). According to the Plancherel formula∫
IRs

(Tkf)(x)ḡ(x) dx =
1

(2π)s

∫
IRs

(
n−k

∑
α∈ZZs

f(T−kα)e−iw·T−kα
)
φ̂((T−k)tw)ĝ(w) dw.

Since φ ∈ L2, it follows that φ ∈ L1 = L1 and so ‖φ̂‖∞ ≤ ‖φ‖1. This together with the

estimate (3.8) tells us that the integrand is bounded by

(2N + 2)s‖φ‖1‖f‖∞|ĝ(w)|.

However, since f ∈ Cc(IRs), the integrand converges pointwise to f̂(w)ĝ(w)φ̂(0) as k →∞,

which proves the desired result.

The theorem will follow once we show φ̂(0) 6= 0. In this case the weak closure of the

subspace

V∞ := ∪k∈ZZV
k

would contain Cc(IRs). It then follows that V∞ is dense in L2(IRs). The proof of the fact

that φ̂(0) 6= 0 follows along the lines of Theorem 2.4 and Theorem 3.5 of [4]. Theorem 3.5

directly applies to our situation. In particular it guarantees that whenever φ ∈ L2 satisfies

the stability inequality (i) then

sup
α∈ZZs

|φ̂(2πα)| > 0.

We now follow the proof of Theorem 2.4 of [4] and show that actually φ̂(2πα) = 0, α ∈

ZZs\{0}. This will then imply φ̂(0) 6= 0 by the above remark.
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Taking the Fourier transform of both sides of the refinement equation (3.4) gives

φ̂(ξ) = n−1a(e−i(T−1)tξ)φ̂((T−1)tξ), ξ ∈ IRs, (3.10)

where a is the function given by

a(eiw) :=
∑

α∈ZZs

aαe
iα·w, w ∈ IRs.

It follows that for any positive integer k,

φ̂(ξ) =
k∏

j=1

(
n−1a(e−i(T−j)tξ)

)
φ̂((T−k)tξ), ξ ∈ IRs. (3.11)

If n−1|a(1)| < 1, then choosing ξ = 0 in (3.10) gives φ̂(0) = 0. Also (3.11) implies φ̂(ξ) = 0

for any ξ ∈ IRs, because when ξ is fixed, n−1|a(e−i(T−j)tξ)| < 1 for sufficiently large j.

Hence, in view of (3.2), we must have |a(1)| ≥ n. Now, we choose ξ = (T k)t(2πβ) for some

β ∈ ZZs\{0} in (3.11) to obtain

φ̂
(
(T k)t(2πβ)

)
= (n−1a(1))kφ̂(2πβ).

Thus |φ̂(2πβ)| ≤ |φ̂
(
(T k)t(2πβ)

)
| and by the Riemann-Lebesgue lemma we conclude that

φ̂(2πβ) = 0 for β ∈ ZZs\{0}, because (T k)t(2πβ) → ∞ as k → ∞. This proves the

theorem.

We are now ready to provide the application of the ideas of Section 2 to wavelet

decomposition. We restrict ourselves to a function φ ∈ L2(IRs) of compact support which

has integer translates that are stable in the sense of (i) and satisfies the refinement equation

(3.4) for some a = (aα : α ∈ ZZs). We observe that a necessarily decays exponentially

fast, that is, there are constants A > 0, ζ ∈ (0, 1) such that

|aα| ≤ Aζ |α| for all α ∈ ZZs.

To see this we recall, as noted in [4] and [5], that by the Poisson summation formula

d(w) :=
∑

α∈ZZs

|φ̂(w + 2πα)|2 =
∑

α∈ZZs

dαe
iα·w, w ∈ IRs
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where

dα =
∫

IRs

φ(x)φ̄(x+ α) dx.

Thus d(w) is a strictly positive trigonometric polynomial. Hence, its reciprocal c(w) :=

1/d(w) has an expansion

c(w) =
∑

α∈ZZs

cαe
iα·w

whose coefficients decay exponentially fast. The function g = [c, φ] has the property that∫
IRs

g(x)φ̄(x− α)dx = δ0α, α ∈ ZZs, (3.12)

see the proof of Theorem 3.3 of [4]. Hence by (3.4) and (3.12) we get

aα = n

∫
IRs

ḡ(Tx− α)φ(x) dx, α ∈ ZZs,

from which it follows that a decays exponentially fast.

Next, we consider the orthogonal complement of V 0 in V 1 which we call W 0. Our

main result is

Theorem 3.2. Suppose φ ∈ L2(IRs) has compact support, stable integer translates and

satisfies the refinement equation (3.4) with a scaling matrix T with |detT | = n > (s+1)/2.

Then W 0 has an unconditional basis consisting of the integer translates of n− 1 functions

ψ2, . . . , ψn of compact support such that V (ψj) is orthogonal to V (ψk), j 6= k. Moreover,

the scaled spaces

W k := sckW 0, k ∈ ZZ

are mutually orthogonal and their sum is dense in L2(IRs).

Proof: The proof follows closely the proof of Theorem 6.1 of [4]. For every s× s integer

matrix T with n := |detT | there exist δ1, . . . , δn ∈ ZZs such that δ1 = 0 and the lattices

δj + TZZs, j = 1, . . . , n partition ZZs. We consider the trigonometric series

aδj (w) :=
∑

α∈ZZs

aδj+Tαe
iα·w, 1 ≤ j ≤ n.
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In view of the fact that a = (aα : α ∈ ZZs) decays exponentially fast, these trigono-

metric series are in C∞(IRs). Moreover, as observed in [4] and [5], they have no common

zeros in IRs. For the argument we recall the identity from [5]

d(w) =
n∑

j=1

eiδj ·waδj (w)µ−δj (w)

where

µδ(w) :=
∑

α∈ZZs

µδ+Tαe
iα·w, δ ∈ ZZs

and

µα :=
∫

IRs

φ(Tx+ α)φ̄(x) dx, α ∈ ZZs.

As observed above, d(w) > 0 for all w ∈ IRs, and so aδj (w), j = 1, . . . , n have no common

zeros on IRs. Thus according to Corollary 2.1, there is an n× n matrix A(w) = (ajk(w)),

j, k = 1, . . . , n such that detA(w) 6= 0 for all w ∈ IRs, a1k(w) = aδk(w), k = 1, . . . , n,

and each of the entries ajk(w), 2 ≤ j ≤ n, 1 ≤ k ≤ n is a trigonometric polynomial. We

introduce the function φj(x) := φ(Tx− δj), j = 1, . . . , n, and so it follows that

V 1 =
{ n∑

j=1

[cj , φj ] : c1, . . . , cn ∈ `2(ZZs)
}
.

We set

ρj :=
n∑

k=1

[ajk, φk], 1 ≤ j ≤ n,

where (ajk
α : α ∈ ZZs) are the sequences of the coefficients in the expansion of ajk(w):

ajk(w) =
∑

α∈ZZs

ajk
α e

iα·w, 1 ≤ j, k ≤ n.

According to the refinement equation (3.4) it follows that ρ1 = φ and since ajk(w) are

trigonometric polynomials we conclude that ρ2, . . . , ρn are of compact support. Thus

Theorem 4.3 of [4] implies that each ρj , 1 ≤ j ≤ n, satisfies an estimate of the type (3.2)

stability. Furthermore, Theorem 4.4 of [4] guarantees that there are functions ψ1, . . . , ψn ∈

V 1 of compact support such that (i) ψ1 = φ, (ii) the spaces V (ψj), j = 1, . . . , n are mutually

orthogonal, and (iii) V 1 is the sum of V (ψ1), . . . , V (ψn). Hence W 0 is the direct sum of
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V (ψ2), . . . , V (ψn). This proves our first claim. Also, the scaled spaces W k = sckW 0

(k ∈ ZZ) are mutually orthogonal. The fact that the sum of the spaces W k, k ∈ ZZ, is

dense follows from (3.3), using general principles, see [5]. This completes the proof.
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