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Abstract

In electromagnetism, materials with a polarization density ~P or a magnetization

density ~M are known to exhibit a bound surface charge density σb = ~P · n̂ or a surface

current density ~κb = ~M × n̂ respectively, where n̂ is the unit vector perpendicular to the

material boundary surface, directed outward. These expressions can be obtained from

volume integrations for the electric potential V , or the magnetic vector potential ~A, in

which the integrals are restricted to the material volumes delimited by their respective

boundaries. In that case, applying the divergence theorem leads to surface integrals on

material boundaries, and to the above mentioned surface quantities. In this paper a

simple derivation is presented, showing that both σb and ~κb are included in the expres-

sions for the volume charge or current densities, provided that the divergence and curl

operators are evaluated at the boundary so as to account for discontinuities at interfaces.

1 Introduction

A general derivation of boundary conditions for electromagnetic fields and associated bound
surface charge and current densities has been presented by Namias (1988)1 for materials in mo-
tion. Yet, the physics and mathematics leading to these boundary conditions is generally given
short shrift in introductory E&M textbooks. In this article, a simple derivation is presented
for bound surface charge and current densities at a material boundary, using mathematical
concepts which should be familiar to intermediate undergraduate physics students. Refer-
ring to standard textbooks on electromagnetism, the expression for the quasi-static electric
potential from material objects with electric polarization vector ~P (~r ′) is

V (~r) =
1

4πǫ0

ˆ

d3r′ ~P (~r ′) · (~r − ~r ′)

|~r − ~r ′|3 =
1

4πǫ0

ˆ

d3r′ ~P (~r ′) · ∇′
1

|~r − ~r ′|

=
1

4πǫ0

ˆ

d3r′∇′ ·
(

1

|~r − ~r ′|
~P (~r ′)

)

− 1

4πǫ0

ˆ

d3r′
∇′ · ~P (~r ′)

|~r − ~r ′|

=
1

4πǫ0

‹

da′
~P (~r ′) · n̂
|~r − ~r ′| +

1

4πǫ0

ˆ

d3r′
−∇′ · ~P (~r ′)

|~r − ~r ′| , (1)

where ∇′· is the divergence operator in the ~r ′ coordinates. In the top line of this equation, use
is made of the expression for the ratio (~r−~r ′)/|~r−~r ′|3 in terms of the gradient∇′|~r−~r ′|−1. The
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middle line uses the product rule for the divergence of a vector field times a scalar function.
Finally in the bottom line, the divergence theorem is used to write the first integral in the
previous line as a surface integral. The second term is readily recognized as the expression
for the electric potential associated with a volume charge density ρb = −∇′ · ~P (~r ′). Similarly
the numerator in the first term is identified as the bound surface charge density σb, under
the (often tacit) assumption that the volume integrations in the top two lines are restricted
to volumes containing materials, delimited by their respective surfaces, thus excluding space
between materials and beyond. The procedure is similar for the bound current density where
the magnetic vector potential resulting from materials with magnetization vector ~M is given
by (Griffiths2 pp. 274-275)

~A(~r) =
µ0

4π

ˆ

d3r′
~M × (~r − ~r ′)

|~r − ~r ′|3

=
µ0

4π

ˆ

d3r′ ~M ×∇′
1

|~r − ~r ′| = −µ0

4π

ˆ

d3r′∇′

(

1

|~r − ~r ′|

)

× ~M

= −µ0

4π

ˆ

d3r′

[

∇′ ×
(

~M

|~r − ~r ′|

)

− ∇′ × ~M

|~r − ~r ′|

]

=
µ0

4π

‹

da′
~M × n̂

|~r − ~r ′| +
µ0

4π

ˆ

d3r′
∇′ × ~M

|~r − ~r ′| , (2)

from which we recognize the bound surface and volume current densities ~κb = ~M × n̂ and
∇′× ~M respectively. This procedure leads to the correct expressions for the bound charge and
current densities, within material volumes and at their surfaces, but it also raises questions:

1. Why restrict the integration to volumes delimited by material boundaries? Isn’t the diver-

gence theorem applicable to any volume, including all space extending to infinity, where

surface integrals would vanish?

2. Where exactly “at” the material boundary is the surface integral calculated? Should it be

infinitesimally close to the boundary from the inside, from the outside, or somehow, in

the “middle” of the discontinuous drop from material to vacuum?

3. In view of question 2, are we missing any contribution to or from the surface charge and

current densities? In particular, in the definitions of the displacement vector and the

auxiliary magnetic fields, resulting respectively from

∇ · ~E =
1

ǫ0

(

ρfree −∇ · ~P
)

, (3)

and

∇× ~B = µ0

(

~Jfree +∇× ~M
)

, (4)

where ρfree and ~Jfree are the free charge density, and the free current density respectively,

why is there no mention of the bound surface charge density in 3 and none of the bound

surface current density in 4?

These questions don’t arise, for example, when calculating the electric potential due to a
volume charge density ρ, for which the result is clearly the same whether the volume integration
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is limited to the space occupied by material objects, or it extends to all space, between and
beyond these materials. The answer is not so straightforward when integrating derivatives of
volume densities, and it is instructive to consider how the integrals are carried out at or across
the boundaries. In the following we show that −∇ · ~P and ∇× ~M give both the volume and
surface density of bound electric charges and currents, provided that they are evaluated so as
to account for possible discontinuities at material boundaries. This in turn provides insight in
the use of surface integrals, and in particular it answers questions 2 and 3 above.

2 Surface charge and current densities in −∇ · ~P and

∇× ~M

Our first task here is to represent a discontinuity in the electric polarization and magnetization
vectors so that we can formally derive an expression for their derivatives at a boundary. In
order to do this, we need to use some basic properties of the Dirac delta function δ(x) and
the Heaviside function H(x). We recall the definitions

H(x) =

{

0 if x < 0
1 if x ≥ 0

, (5)

and assuming a < b,

ˆ b

a

δ(x− x0)f(x)dx =

{

0 if x0 < a or b < x0

f(x0) if a < x0 < b
(6)

for an arbitrary continuous function f(x). From this, it follows that

ˆ x

−∞

δ(x− x0)dx = H(x− x0), (7)

and formally, using the chain rule for the derivative of H with respect to x,

d

dx
H(x− x0) = H ′(x− x0) = δ(x− x0), (8)

where the prime on H stands for the derivative of H with respect to its argument. Of course,
mathematically the derivative of a Heaviside function is not defined at the discontinuity, but
it is if we consider δ(x) as an approximation to a strongly localized distribution, such as the
normal distribution

fN(x− x0) =
1√
2πσ2

exp

(

−(x− x0)
2

2σ2

)

, (9)

in the limit σ → 0 or for a very small σ, and the Heaviside function as the integral of this distri-
bution, as the standard deviation σ approaches zero. Thus, in what follows, we use derivatives
of the Heaviside function with the understanding that in practice, H can be thought of as
an approximation of a differentiable function albeit with a very steep transition from zero to
unity. We are now ready to evaluate −∇ · ~P and ∇× ~M at a material boundary. For simplic-
ity and without loss of generality we assume that a material ends abruptly at its boundary
outside of which there is vacuum where ~P and ~M are zero. That is, the boundary is between a
material and vacuum, and not between two materials with different physical properties. The
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formalism presented below could readily be extended to boundaries separating two different
materials by following the same approach, or simply by using the linear superposition prin-
ciple. Macroscopically, the boundaries are assumed to be smooth so that, for a sufficiently
small (but still macroscopic) piece, it is approximately flat. In that case, the transition from
“inside” to “outside” can be represented using the Heaviside function:

~P = H ((~s− ~r) · n̂) ~P (10)

for the polarization vector, and similarly

~M = H ((~s− ~r) · n̂) ~M (11)

for the magnetization vector where, as illustrated in Fig. 1, n̂ is a unit vector perpendicular
to the surface, pointing outward, and ~s is an arbitrary point on the surface near the location
where derivatives are evaluated. Note that, since we are considering a region “very close to

s

n

r

s
-r

^
material

vacuum

Figure 1: Illustration of a material-vacuum interface

the boundary”, vector fields ~P and ~M could be replaced with constant values, say, ~P0 and
~M0, and the only dependence on position would be in the H function used to represent the
discontinuity. A possible ~r dependence in ~P and ~M is nonetheless retained in Eqs. 10 and 11,
as it captures both bound volume charge and current densities. Using Eq. 10, the product
rule, and the chain rule, it follows that

−∇ · ~P = H
(

−∇ · ~P
)

−∇H · ~P

= H
(

−∇ · ~P
)

−H ′ ~P · ∇ ((~s− ~r) · n̂)

= H
(

−∇ · ~P
)

+ δ ((~s− ~r) · n̂) ~P · n̂. (12)

The first term in Eq. 12 is the usual bound volume charge density with H representing the
discontinuity at the boundary, and the second term is the (singular / strongly localized) surface

charge density. The bound current density from ∇× ~M is obtained in the same way. Using
Eq. 11 for ~M near the boundary we find

∇× ~M = H
(

∇× ~M
)

+∇H × ~M

= H
(

∇× ~M
)

+H ′∇ ((~s− ~r) · n̂)× ~M

= H
(

∇× ~M
)

− δ ((~s− ~r) · n̂) n̂× ~M

= H
(

∇× ~M
)

+ δ ((~s− ~r) · n̂) ~M × n̂. (13)
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The two terms in the right side of the last equation are the bound volume and surface current
densities respectively. From Eqs. 12 and 13, we see that the bound volume and surface charge
densities are both contained in −∇ · ~P , and likewise, the bound volume and surface current
densities are in ∇× ~M .

3 Summary and conclusion

The bound surface charge and current densities are shown to be contained respectively in
−∇ · ~P and ∇ × ~M , generally presented as exclusively volume charge and current densities
in introductory textbooks, while bound surface and current densities are written separately
as different expressions. These expressions are usually obtained by applying the divergence
theorem in the integrals for the electric potential and the magnetic vector potential, and
limiting volume integrals to the space occupied by material objects, excluding regions between
them and beyond. The same expressions for bound surface charge and current densities are
obtained more generally by integrating over all space, without restriction. In this case the
surface integral resulting from the divergence theorem vanishes, and the correct expressions
for the bound surface charge and current densities are obtained from the divergence and curl
operators provided that they are evaluated so as to account for the discontinuity at material
boundaries. While this analysis reproduces known results, it provides additional insight as
it shows that −∇ · ~P and ∇ × ~M , also account for surface densities for bound charges and
currents in the constitutive equations 3 and 4. Coming back to questions 2 and 3 above,
we find that in the standard procedure with volume integrations restricted material volumes,
integration surfaces must be formally assumed to be infinitesimally close to the boundaries
inside materials, and that no physics is omitted by doing so. In the presentation above a
magnetization vector ~M is assumed without mention of the contributions at microscopic scales.
Interestingly, several contributions to ~M have been considered (Garg3 p. 295), and shown to
lead to the same expressions for the bound volume and surface current densities as presented
above. Finally, while for solid materials with macroscopically sharp boundaries, surface charge
and current densities are readily obtained from the standard procedure, with materials such
as fluids with initially sharp but progressively diffuse boundaries, using the expressions for the
charge and current densities presented here should be selected as a preferred approach.
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