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On-line outlier detection and data cleaning
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Abstract

Outliers are observations that do not follow the statistical distribution of the bulk of the data, and consequently may lead to erroneous
results with respect to statistical analysis. Many conventional outlier detection tools are based on the assumption that the data is identically and
independently distributed. In this paper, an outlier-resistant data filter-cleaner is proposed. The proposed data filter-cleaner includes an on-line
outlier-resistant estimate of the process model and combines it with a modified Kalman filter to detect and “clean” outliers. The advantage
over existing methods is that the proposed method has the following features: (a) a priori knowledge of the process model is not required; (b)
it is applicable to autocorrelated data; (c) it can be implemented on-line; and (d) it tries to only clean (i.e., detects and replaces) outliers and
preserves all other information in the data.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Outliers are observations that deviate significantly from
the majority of observations. They may be generated by
a different mechanism corresponding to normal data and
may be due to sensor noise, process disturbances, instru-
ment degradation, and/or human-related errors. It is futile
to do data based analysis when data are contaminated with
outliers because outliers can lead to model misspecification,
biased parameter estimation and incorrect analysis results.
The majority of outlier detection methods are based on an
underlying assumption of identically and independently dis-
tributed (i.i.d.) data, where the location (e.g., the mean) and
the scatter (e.g., variance/covariance) are the two most im-
portant statistics for data analysis in the presence of out-
liers (seeRousseeuw & Leroy, 1987and references therein).
Among these methods, the Hampel identifier is regarded
as one of the most robust and efficient outlier identifiers
(Davies & Gather, 1993; Perarson, 2002). It is well known
that significant autocorrelation exists in regularly sampled
data from the process industry. For autocorrelated data, fol-

∗ Corresponding author. Tel.:+1-780-492-5162;
fax: +1-780-492-2881.

E-mail address:sirish.shah@ualberta.ca (S. Shah).

lowing the pioneering work ofFox (1972), there is a sub-
stantial amount of research on maximum likelihood based
outlier detection methods assuming known process mod-
els (e.g.,Bianco, Garcia, Martinez, & Yohai, 1996; Bianco,
Garcia, Ben, Martinez, & Yohai, 2001; Chen & Liu, 1993;
Tsay, 1988, 1996). Martin and Thomson (1982)proposed a
data cleaning method using a modified Kalman filter which
is based on an estimated autoregressive (AR) model. How-
ever, in practice, it is hard to know the exact process mod-
els and outlier detection method without a process model is
still an open area of research. Most existing outlier detection
methods are essentially off-line operations and it is gener-
ally hard to filter outliers and simultaneously keep a track
of a changing process model.

For process monitoring purposes, on-line data-based
analysis, such as, on-line PCA, on-line PLS-based monitor-
ing, and on-line controller performance monitoring, needs
“clean” data to provide reliable detection and diagnosis
results. Data preprocessing is a necessary pre-requisite step
prior to process and performance monitoring. One important
purpose of data preprocessing is to sort or sieve all data and
to remove and replace outliers with their expected values.
The first step in data preprocessing is to detect outliers. The
detected outliers are considered as missing values, and the
data are reconciled or estimated. In view of this point, data
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preprocessing is different from data filtering. Data filtering
changes the data structure by not only removing outliers but
also reducing data variations. Data preprocessing is gener-
ally more difficult than filtering because it simultaneously
requires identification of the data structure and estimation
of the noise level so as to remove the outliers and retain
“good” data. An efficient on-line data cleaner is an impor-
tant ingredient of data preprocessing. Recently,Nounou and
Bakshi (1999)proposed an on-line data filtering method
without the use of process models. They applied wavelet
thresholding to data in a moving window of dyadic length
to filter data on-line and a finite impulse response (FIR)
median hybrid (FMH) filter to reconcile outliers and pro-
cess shifts. The given filter focuses mainly on data filtering
for multiscale process data contaminated with outliers, but
not on data preprocessing since the filtered data may lose
much original data information.

In this paper, an on-line filter-cleaner is proposed based
on a filter-cleaner developed byMartin and Thomson (MT)
(1982), from here onwards denoted as the revised MT
filter-cleaner. Filtering implies use of past and current data
to estimate the current point and its variation. Cleaning on
the other hand is concerned with detection and replacement
of outliers. The term “filter-cleaner” combines both of these
functions. Unlike the original MT filter-cleaner, the revised
MT filter-cleaner can work without priori knowledge of the
exact underlying model by capturing the dynamics of the
process data on-line. The revised MT filter-cleaner resorts
to a high breakdown decorrelation approach for outlier de-
tection. It is demonstrated that the proposed filter-cleaner is
efficient in outlier detection and data cleaning for autocor-
related and even nonstationary process data. An important
requirement of the revised MT filter-cleaner which is crucial
to data preprocessing is that it should only clean outliers
and otherwise preserve all correct data information. How-
ever, being a filter, there is also a small risk of cleaning
“good outliers”.

The paper is organized as follows: Preliminaries in the
area of outlier detection and data cleaning are presented in
Section 2. This is followed by the introduction of the new
method to construct a decorrelation model for the revised
MT filter-cleaner inSection 3. The revised MT filter-cleaner
is proposed inSection 4. In Section 5, the robustness of this
filter-cleaner for a broad class of autocorrelated and even
nonstationary process data is analyzed, and its performance
is compared with the Hampel identifier, followed by con-
cluding remarks inSection 6.

2. Preliminaries

Many outlier detection methods assume that the under-
lying data model is i.i.d.. For univariate process data, pa-
rameter estimation from contaminated data has been inves-
tigated extensively in the statistical literature (seeBarnett &
Lewies, 1994). The location and the scatter are two of the

most useful parameters for describing or characterizing data
mean and variation. Traditionally, the sample meanX̄ and
varianceS2 of a sampleXN = {xi}Ni=1 give good estimation
for data location and scatter if outliers do not contaminate
the sample, i.e.,

X̄ =
∑N

i=1 xi

N
, S2 =

∑N
i=1(xi − X̄)2

n− 1

However, when a dataset contains outliers, even a single
out-of-scale observation, the sample mean may deviate sig-
nificantly. To measure the robustness of an estimator against
outliers,Hampel (1971)introduced the concept of the break-
down point. The breakdown point is the smallest percentage
of contaminated data (outliers) that can cause an estimator
to take arbitrary large aberrant values. Generally, the larger
breakdown point an estimator has, the more robust it is. It
can be seen that the sample mean has a breakdown point of
1/N since a single large observation can make the sample
mean and variance cross any bound. Thus, to robustly esti-
mate the location and the scatter, the median and the median
absolute deviation (MAD) are often recommended

median(XN) = x[(N+1)/2]:N + x[N/2]+1:N

2
,

MAD(XN) = median(|x1 − median(XN)|, . . . ,
|xN − median(XN)|).

where [.] is the function to “round-down” to the nearest
integer andx1:N, . . . , xN:N are the order statistics of the
sampleXN . The median estimator has a breakdown point
of 50%. Hampel (1974)suggested an identifier using the
median to estimate data location, and the MAD to estimate
data standard deviation, i.e.,x is identified as an outlier if

|x − median(XN)| ≥ g(N, αN)MAD(XN), (1)

whereg is a function related to the number of data points
and a specified type I error (for details, seeDavies & Gather,
1993). The Hampel identifier is often considered extremely
effective in practice(Perarson, 2002).

However, the i.i.d. assumption is often violated in real-
ity, especially for auto- and cross-correlated chemical pro-
cess data. For highly autocorrelated data, process data can
be characterized by a time series model. For example, sup-
pose{yt} is the observed series and{xt} is the underlying
outlier-free series. Assume that{xt} is Gaussian with mean
µ and autocorrelation coefficient function given by

ρk = E[(xt − µ)(xt+k − µ)]√
E[(xt − µ)(xt − µ)]E[(xt+k − µ)(xt+k − µ)]

,

whereE[·] denotes the expectation operator. Supposeµ = 0
and{xt} follows a general autoregressive integrated moving
average (ARIMA) model(Box, Jenkins, & Reinsel, 1994),
i.e.,

Φ(q−1)(1 − q−1)dxt = Θ(q−1)at, (2)

where at is an independent Gaussian noise with mean 0
and varianceσ2

a , and q−1 is the backshift operator. Here,
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Φ(q−1) andΘ(q−1) are polynomials inq−1 with degrees
m andn, respectively, and are parameterized asΦ(q−1) =
1−φ1q

−1−φ2q
−2−· · ·−φmq

−m andΘ(q−1) = 1−θ1q
−1−

θ2q
−2 − · · · − θnq

−n. We assume that all of the zeros of the
determinants|Φ(q−1)| and |Θ(q−1)| are on or outside the
unit circle. The model(2) is also called ARIMA(m, d, n)
model. The additive outlier (AO) model is defined as

yt = xt + vt, (3)

whereyt are the observed data andvt are additive outliers
with unknown distribution. It has been shown that addi-
tive outliers are most detrimental for model parameter es-
timation (e.g.,Chang, Tiao, & Chen, 1988; Chen, & Liu,
1993).

Most of the research literature assumes a known process
data model whose outliers are identified and cleaned off-line.
Based on a robust Kalman filter introduced byMasreliez
and Martin (1997), Matin and Thomson (1982)proposed a
filter-cleaner where a psi-functionΨ is applied to the inno-
vations to prevent outliers from the data having undue influ-
ence on the Kalman filter predictions. The MT filter-cleaner
provides a good alternative for data preprocessing by detect-
ing gross errors. However, the MT filter-cleaner is essen-
tially an off-line scheme which is based on the pre-estimated
time series model. Moreover, the breakdown point of the
MT filter-cleaner is low when the order of model becomes
high. In this paper, we propose a moving-window-based
MT filter-cleaner which can capture the dynamic changes
in the process data in an on-line fashion. The proposed

Fig. 1. Autocorrelated data contaminated with outliers.

filter-cleaner also has a fixed breakdown point for any model
order.

3. Construction of a prewhitening model for
autocorrelated data contaminated with outliers

Outlier detection is difficult when process data is contam-
inated with outliers and the underlying model is unknown.
It is necessary to prewhiten process data first in order to re-
move outliers. Here an AR(p) model is used to decorrelate
process data.

For illustration,Fig. 1shows the plot of the observations
{yt}300

t=1 generated from an AR(2) model contaminated by
outliers, which is given by

xt = 0.7xt−1 + 0.2xt−2 + at, yt = xt + vt

whereat is i.i.d. with N(0,1) andvt is an additive outlier.
The outliers,vt , are randomly generated with magnitudes of
−5 or 5 with the probability of 0.08 at timet.

It is obvious that the data sequence is autocorrelated
and outliers are present. In order to decorrelate this data
sequence, we estimate an AR(2) model from the data se-
quence. The least-square estimation can be obtained by
minimizing

300∑
t=3

(yt − φ1yt−1 − φ2yt−2)
2.
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Fig. 2. Residuals based on least square estimation.

The estimated model is

xt = 0.3698xt−1 + 0.2883xt−2 + at, (4)

which is far away from the real data model. It can be ob-
served fromFig. 2 that the residuals from the estimated
model(4) are still autocorrelated.

Therefore, when raw data contains outliers, a robust es-
timation of the model such asHuber’s M-estimator (1981)
is necessary. However, as shown byMartin (1979), the
M-estimators have zero breakdown points when AO departs
from perfectly observed autoregressive models.Denby and
Martin (1979)suggested the use of generalized M-estimator
to bound the influence of outlying points by means of
some weight functions. Even though the GM-estimator has
the positive breakdown point bounded above by 1/(p + 2)
(Maronna, 1976), it can easily fail when the order of the
AR(p) model is high.

To improve the robustness of the model estimates, we
propose to estimate autocorrelation coefficients by a multi-
variate location and scatter estimator separately. Then, the
Yule–Walker equations (Box, Jenkins, & Reinsel, 1994) are
applied to solve the AR(p) model parameters based on all the
kth autocorrelation coefficients. For the observations{yt}Nt=1,
its kth autocorrelation coefficient can be estimated by trans-
forming the original univariate series{yt}Nt=1 into a bivariate
series{Yt = (yt, yt−k)}Nt=k+1 and applying one of the mul-
tivariate robust estimation methods instead of the univariate
M- or GM-estimators. For example, the minimum covari-

ance determinant (MCD) estimator developed byRousseeuw
(1984) and Rousseeuw and Driessen (1999)is a good al-
ternative. The following Theorem shows that the proposed
robust estimator for the AR(p) models is more robust than
the M- and GM-estimators.

Theorem 1. Consider observations{yt}Nt=1 from an AR(p)
process data. If each kth(k = 1,2, . . . , p) order autocorre-
lation coefficient is independently estimated by a robust esti-
mator which has a breakdown point ofh (0 < h < 1/2), then
the AR(p) model estimator obtained from the Yule–Walker
equations has a breakdown point ofh/2 whenN tends to
infinity.

Proof. See Appendix A. �

Theorem 1constructs an AR(p) model estimator whose
breakdown point depends only on the breakdown point of a
multivariate covariance matrix estimator. For example, if we
apply the MCD method, whose highest breakdown point is
0.5, then the highest breakdown point of the AR(p) model
estimator can be as high as 0.25 no matter how largep is.
The MCD method is one of the most efficient estimators
in computation. This enables our method to be applicable
on-line.

Once all the autocorrelation coefficients are obtained, then
the Yule–Walker equations are solved to obtain the AR(p)
model parameters and the MT filter-cleaner can be applied to
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filter future observations. In the following section, we briefly
introduce the original MT filter-cleaner and then develop the
revised MT filter-cleaner.

4. The original and the revised MT filter-cleaner

4.1. The MT filter-cleaner

Suppose the underlying process data model can be well
approximated by an AR(p) model. Given an AO model
(3), Martin and Thomson (1982)proposed the following
filter-cleaner algorithm in state space form:

Xt = ΦXt−1 + Ut,

where

XT
t = [xt, xt−1, . . . , xt−p+1],

UT
t = [εt,0, . . . ,0],

Φ =




φ1 φ2 · · · φp−1 φp

1 0 · · · 0 0

0 1 · · · 0
... 0 · · · ...

...

... · · · ...
...

0 · · · 1 0



,

The filter-cleaner computes robust estimates of the vector
Xt according to a matrixMt :

X̂t = ΦX̂t−1 + m̃tstΨ

(
yt − ŷt−1

t

st

)
,

wherem̃ = mt/s
2
t , andmt is the first column of thep × p

matrixMt . The matrixMt is computed recursively as

Mt+1 = ΦPtΦ
T +Q,

Pt = Mt − w

(
yt − ŷt−1

t

st

)
mtm

T
t

s2t
,

whereQ is a matrix with all zero entries exceptQ11 = σ2
ε .

The time-varying scale is defined as

s2t = m11,t = 1-1 ∈ Mt,

where m11,t is the one-one element ofMt . The symbol
ŷt−1
t denotes a robust one-step ahead prediction ofyt based

on Yt−1 = (y1, . . . , yt−1), and is given by

ŷt−1
t = (ΦX̂t−1)1,

and ŷt−1
t is the first element ofΦX̂t−1.

With the AO model(3), wherext andvt independent, a
best predictor ofyt is also a best predictor ofxt , and so the
robust one-step ahead predictorx̂t−1

t of xt satisfiesx̂t−1
t =

ŷt−1
t . Finally, the cleaned data at timet is given by the first

element ofX̂t ,

x̂t = (X̂t)1.

The psi-function,Ψ , and weight-function,w, are essential
to obtain robustness. IfΨ andw are always equal to 1, then
the MT filter-cleaner is the commonly used Kalman filter. In
order to obtain robustness, both functions should be bounded
and continuous. One commonly used value ofw is defined by

w(τ) = Ψ(τ)

τ
.

In practice, theΨ function is generally chosen as the
three-sigma edit rule

Ψ(τ) =
{
τ, |τ| < K

0, |τ| ≥ K

or

Ψ(τ) =
{
τ, |τ| < K

sign(τ)K, |τ| ≥ K
(5)

whereK = 3. It should be noticed that the MT filter-cleaner
assumes that the process data model is known. Here we pro-
pose the revised MT filter-cleaner which is applicable when
the process data model is unknown, and its decorrelation
model is adaptively estimated through an AR(p) model over
a moving window. After the decorrelation model is obtained
by the method suggested inSection 3, the rest of the data
cleaning procedure is the same as in the MT filter-cleaner.

4.2. The revised MT filter-cleaner

For a process data sequence, at timet, the revised MT
filter-cleaner procedure consists of the following steps:

1. Choose a dataset{yt}Ni=t−N+1 with window sizeN.
2. Select the orderp of the autoregressive process data.
3. Estimate the AR(p) decorrelation model based on the

dataset{yt}Ni=t−N+1.
3.1. Estimate the meanµ and varianceγ0 of {yt}Ni=t−N+1

based on a univariate robust estimator.
3.2. Form the new multivariate datasets{Yki =

(yi, yi−k)}Ni−t−N+k+1 (k = 1,2, . . . , p). For thekth
multivariate dataset{Yki }Ni=t−N+k+1, the covariance

matrix

[
γk11 γk12

γk21 γk22

]
of this dataset{Yki }Ni=t−N+k+1

can be estimated by any robust multivariate loca-
tion and scatter estimators (e.g., Rousseeuw’s MCD
method). Then, thekth autocorrelation coefficient

ρk = γk12/

√
γk11γ

k
22.

3.3. Solve the Yule–Walker equations:

ρj = φ1ρj−1 + φ2ρj−2 + . . .+ φpρj−p,

j = 1, . . . , p.
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Denote

φ =



φ1

φ2

...

φp


 , ρ =



ρ1

ρ2

...

ρp


 ,

P =




1 ρ1 · · · ρp

ρ1 1 · · · ρp−1

...
...

...
...

ρp ρp−1 · · · 1


 .

Thenφ = P−1ρ, and the process data model is esti-
mated as

xt = µ

1 − φ1 − φ2 − · · · − φp

+φ1xt−1 + φ2xt−2 + · · · + φpxt−p + εt.

4. Filter and clean the data: Construct the state-space form
for the process data over the user specified window and
use the MT filter-cleaner to filter/clean the current data
point yt .

5. Go to step 1.

The orderp of the autoregressive model in step 2 can be
obtained from the Akaike information criterion (AIC) or the
Bayesian information criterion (BIC).

However, from our experience, this selection is not critical
in this procedure. Denote bŷsε(p) the estimated noise stan-
dard deviation when the order of the autoregressive model is
p. In practice,p can be simply chosen such thatŝε(p+1) is
not much smaller than̂sε(p), so a lower order model often
suffices.

5. Comparison of the revised MT filter-cleaner with
the hampel filter

The Hampel identifier(1) can be implemented on-line in
a moving window and the detected outliers can be replaced
by the median of the data in the moving window. This has
so far been considered one of the most robust and efficient
on-line data filtering and cleaning tools(Albuquer & Biegler,
1996). However, as mentioned earlier, many outlier identi-
fiers such as the Hampel identifier assume that the under-
lying process data is i.i.d.. When the process data is highly
autocorrelated, such identifiers may fail to capture most out-
liers due to strong autocorrelation. In this section, we shall
use the Hampel identifier as a benchmark to demonstrate the
effectiveness of the revised MT filter-cleaner in the presence
of autocorrelated data obtained from a process in a transient
or dynamic state.

Our comparison will be conducted from two aspects. First,
we compare the outlier detection efficiency of the two iden-
tifiers for time-invariant processes, i.e., process data model

does not change with time. Then, a numerical example of a
time-varying processes is used to illustrate the performance
of the identifiers. Naturally, these comparisons are limited
and could never cover all process scenarios. Further study
of other linear and nonlinear process data is under investi-
gation.

5.1. Time invariant process data

We now first analyze the outlier detection efficiency
of both the Hampel identifier and the revised MT
filter-cleaner. A natural measure of outlier detection ef-
ficiency is the outlier detection rate when outliers are
present. This strongly depends on outlier sizes and distri-
butions. Albuquer and Biegler (1996)introduced a nota-
tion of “relative efficiency” to measure outlier detection
efficiency of outlier identifiers. The relative efficiency is
defined as the ratio of the error variances between the
theoretical optimal estimator and the actual estimator,
i.e.,

E = σ2
opt

σ2
act

,

whereσ2
opt is the error variance of the theoretical optimal

estimator andσ2
act is the error variance attained by the

actual estimator. The relative efficiency does not depend
on conditions of outliers. Generally, it is conceived that,
the higher relative efficiency an outlier detection method,
the higher outlier detection rate. However, no work has
been done to show the relationships between the two mea-
sures.

To measure the power of outlier detection methods,
we introduce statistical definition of type I and II er-
rors. For a fixed level of outlier size and contamination
rate, we define detection and misidentification rates as
the proportion of correct outlier identification from the
total number of outliers and proportion of misidentifica-
tion from the total number of “good” data points, respec-
tively. To be precise, the Hampel identifier declares an
outlier when inequality(1) holds, while the revised MT
filter-cleaner declares an outlier whenΨ(τ) = sign(τ)K
in (5). Threshold parametersg(N,aN) in the Hampel
method andK in the revised MT method are chosen
so that the type I errors of both methods are 0.01, i.e.,
the misidentification rate is 0.01 when no outliers are
present.

We investigate an ARIMA process and an open-loop sys-
tem for an output error (OE) process. Detection and misiden-
tification rates are obtained from Monte Carlo simulations.
The simulation was run with 10,000 test data points for
each process data model. The window length of both iden-
tifiers are selected as 100 to obtained the reliable process
data model. For simplicity, an AR(1) model was used in the
revised MT-method since the selection of model orderp is
not critical in our procedure.
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5.1.1. Data from an ARMA and ARIMA models
For illustration, the two outlier identifiers are applied to

process data generated by stationary ARMA(1, 1) models.
Although the Hampel filter is developed to estimate the mean
and variance of an i.i.d. process, when data sample is large
enough, these estimators are robust if the outlier contami-
nation rate is less than 50%, i.e., it can correctly capture the
mean and variance of the ARMA process and the estimated
error follows exactly the same ARMA(1, 1) model as the
underlying process data

(1 − φq−1)xt = (1 − θq−1)at, (6)

whereat is a stochastic noise with mean 0 and varianceσ2
a .

A closed-form expression for the autocorvariance coefficient
function follows(Pandit & Wu, 1990))

γk =




(φ − θ) (1 − φθ)

1 − φ2
φk−1σ2

a , k ≥ 1

1 − 2φθ + θ2

1 − φ2
σ2
a , k = 0

(7)

and the relative efficiency of the Hampel filter can be com-
puted as

EHampel=
σ2

opt

σ2
act

= σ2
a

σ2
e

= 1 − φ2

1 + θ2 − 2φθ
.

On the other hand, when the data sample is large enough
and the outlier contamination rate is not high, if an AR(1)
model is used in the revised-MT estimator to estimate the

Fig. 3. Relative efficiency comparison between the revised MT filter-cleaner and the Hampel filter.

real ARMA(1,1) model(6), then estimated errorset can be
expressed as

et = (1 − φ∗q−1)xt.

Therefore,et follows an ARMA(2, 1) process

(1 − φ∗q−1)et = 1 − θq−1

1 − φq−1
at,

whereφ∗ is determined by minimizing the estimated vari-
ance, i.e.,

E(et, et)= minφ∗

1 + (φ − θ − φ∗)[2φ∗θφ − (θ + φ∗)]
+(φ∗θ)2 − φ(θ + φ∗)

1 − φ2
σ2
a

= (1 − 2φθ + θ2)2 − (θ − φ)2(1 − φθ)2

(1 − θ2 − 2φθ)(1 − φ2)
σ2
a .

The relative efficiency of the revised MT filter-cleaner is

ERe−MT = σ2
opt

σ2
act

= (1 − θ2 − 2φθ)(1 − φ2)

(1 − 2φθ + θ2)2 − (θ − φ)2(1 − φθ)2
.

Fig. 3 shows the relative efficiency of the two methods for
this ideal case, i.e., when the sample size is infinite and
outlier contamination rate is not high. It is obvious that the
relative efficiency based on the revised MT filter-cleaner is
always greater than that based on the Hampel filter. More
importantly, when the autocorrelation is high, the relative
efficiency of the Hampel filter is very small. Therefore, it is
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Table 1
On-line outlier detection rates for data from ARMA(1, 1) process

φ θ ρ1 Outlier size Revised MT Hampel

Relative
efficiency (%)

Mis-ID
rate (%)

Detection
rate (%)

Relative
efficiency (%)

Mis-ID
rate (%)

Detection
rate (%)

0.0 0.0 0.00 4.0 1.00 0.55 82.83 1.00 0.63 84.23
0.0 0.0 0.00 5.0 1.00 0.43 95.41 1.00 0.44 96.41
0.0 −0.5 0.40 4.0 0.95 0.54 78.24 0.80 0.86 73.85
0.0 −0.5 0.40 5.0 0.95 0.41 94.81 0.80 0.85 92.61
0.0 −0.9 0.50 4.0 0.73 0.58 65.87 0.55 0.81 53.89
0.0 −0.9 0.50 5.0 0.73 0.45 86.03 0.55 0.66 75.25
0.5 0.0 0.50 4.0 1.00 0.49 82.44 0.50 0.71 73.65
0.5 0.0 0.50 5.0 1.00 0.40 95.01 0.50 0.80 92.02
0.5 −0.5 0.71 4.0 0.86 0.54 74.85 0.43 0.72 41.52
0.5 −0.5 0.71 5.0 0.86 0.46 90.22 0.43 0.75 62.87
0.9 0.0 0.90 4.0 1.00 0.59 79.84 0.19 0.47 12.57
0.9 0.0 0.90 5.0 1.00 0.37 93.01 0.19 0.56 25.15

expected that the outlier detection rate of the Hampel filter
is also low when the autocorrelation is high, and the revised
MT filter-cleaner should offer improvement over the Hampel
method.

When the two methods are implemented on-line with a
limited window, it is generally hard to derive their relative
efficiencies. To compare the performance of the two methods
with finite samples, their outlier detection rates are evaluated
via a Monte Carlo simulation.Table 1. shows the first order
autocorrelation coefficient, the theoretical relative efficiency
(when sample size is infinitely large), the misidentification
and detection rates based on the simulation study under dif-
ferent ARMA(1, 1) process data when outlier contamination
rate is 5%. Outliers of 4 or 5 standard deviations of white
noiseat were generated and added to the process in order to
investigate the impact of outlier size. As shown inTable 2,
the Hampel method shows a significant deterioration when
process autocorrelation becomes high. For example, when
φ = 0 andθ = 0 (i.e., the process is i.i.d.), the Hampel
method identifies about 84% of outliers of size 4σa. When
φ = 0.9 andθ = 0 (i.e., the first-order correlation coefficient
is 0.9), it can only identify 13% of the outliers. Larger out-
lier size helps the outlier detection, but not significantly. On
the other hand, the revised-MT method has about the same
detection rate (83%) when the process is i.i.d., and has 80%
detection rate when the autocorrelation is high. The reason
is that the revised-MT method has theoretically the same

Table 2
On-line outlier detection rates for data from an ARIMA(1, 1, 1) process

φ θ Outlier size Revised MT Hampel

Mis-ID rate (%) Detection rate (%) Mis-ID rate (%) Detection rate (%)

0.0 0.5 4.0 0.94 43.16 0.40 9.39
0.0 0.5 5.0 0.18 69.93 0.21 14.99
0.0 −0.9 4.0 1.53 20.18 0.71 1.10
0.0 −0.9 5.0 1.87 39.26 0.91 1.80
0.5 0.0 4.0 1.12 19.28 0.89 1.10
0.5 0.0 5.0 0.86 38.96 0.71 1.20

relative efficiency whether the process data is i.i.d. or not.
At the same time, the revised-MT method always has a

lower misidentification rate than the Hampel method, i.e.,
the former is able to capture the system dynamics more pre-
cisely than the later. It is important to note that the misiden-
tification rate is less than 1% which is the target type I er-
ror. This is because, with outliers involved, the actual er-
ror variance is higher than the error variance when outliers
are not present. Consequently, wider limits are obtained and
fewer misidentification results. This becomes more obvious
for large outliers (e.g., 5σa). The detection power increases
for large outliers as they are more easily noticed. When we
tested for a higher (e.g., 10%) outlier contamination rate,
similar results were observed.

Take the last process as an example.Fig. 4shows a snap-
shot of outlier detection and data cleaning comparison for
the revised MT filter-cleaner versus the Hampel filter, where
the underlying model is

xt = 0.9xt−1 + at

and the actual outliers are added at every 20th sample in-
stance (i.e., at 0,20,40, . . . ) points. Here if a data point is
out of the upper and lower limits, the point is considered
as an outlier and replaced by its expected values. Compar-
ing the two methods, the revised MT filter-cleaner is able to
detect five additional outlier (as shown by arrows) that the
Hampel filter fails to detect.
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Fig. 4. Outlier detection and cleaning comparison: arrows in the top graph indicate five additional outliers that revised MT method is able to detect. The
Hampel method considers these five points as normal data.

It should be pointed out that the relative efficiency of
a filter-cleaner is not sufficient to determine the power of
the filter-cleaner against outliers. Both detection rate and
misidentification rate are strongly related to outlier sizes.
Generally the larger the outlier, the easier it is to detect the
outlier and the estimated model is more precise.

Table 2 shows simulation results for nonstationary
ARIMA(1, 1, 1) process data. The Hampel filter now
becomes so bad that it fails to detect outlier in most of
cases. The nonstationarity also deteriorates the revised-MT
method, but still keeps its detection rate at a reasonable
level. It also can be observed that the misidentification rates
in some cases are greater than 0.01 for the revised MT
filter-cleaner. That means that the nonstationary property of
a data process model may affect the outlier detection per-
formance of the revised MT filter-cleaner in some unknown
ways. This suggests that further modifications of the re-
vised MT method may be necessary, for example, by taking
differences before fitting AR(p) models. This procedure is
currently under investigation in a separate project.

5.1.2. Data from an output error model
We now discuss data filtering and cleaning for an OE

model. Consider a case where processes are subjected to
an output error model as shown inFig. 5. Assume that the
process is described by the following OE model:

xt = 0.037q−1 + 0.07172q−2 + 0.00785q−3

1 − 1.3422q−1 + 0.4455q−2 − 0.045q−3
ut + at,

Fig. 5. Details of the output error model for generating process data.

whereq−1 is the backshift operator,ut is the input, andat
is a stochastic disturbance with mean 0 and variance 1. The
input ut is a random binary sequence (RBS) between−4
and 4. With the steady-state process gain of 2, the size of
the random binary sequence input is large enough so that
the contribution from input changes are not be masked by
the noise.

A simulation is carried out to compare the outlier de-
tection performance of the two methods.Table 3presents

Table 3
On-line outlier detection for data from an output error model process

Outlier
size

Outlier
percentage

Revised MT Hampel

Mis-ID
rate (%)

Detection
rate (%)

Mis-ID
rate (%)

Detection
rate (%)

6 5 0.64 54.6 0.94 39.31
6 10 0.42 42.69 0.57 34.15
8 5 0.53 84.92 0.84 70.07
8 10 0.32 73.14 0.58 65.82
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Fig. 6. Time series trajectory of raw data from Syncrude Canada Ltd.

the simulation results of misidentification rates and out-
lier detection rates for different outlier size and percent-
age. As before, the outlier detection rates of the revised
MT method are much greater than those of the Hampel
method.

Fig. 7. Time series trajectory of raw and “clean” data using the revised MT method and the Hampel method for variable 14.

5.2. Time varying process data

In practice, process data may change over time, e.g., base-
line changes. For data from time-varying processes in the
presence of outliers are present, process tracking becomes
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Fig. 8. Time series trajectory of raw and “clean” data using the revised MT method and the Hampel method for variable 36.

extremely difficult since it is hard to differentiate change
points and outliers when changes or outliers first occurs. In
this section, a real example of an industrial data set from
Syncrude Canada Ltd. is used to illustrate the on-line capa-
bility of the revised MT method in capturing the dynamic
change of the process data model in presence of outliers.

Two variables, V14 and V36, have been selected from the
process data since outliers and change points are present in
both of variables. Their time series are displayed inFig. 6. It
is clear that some observations are very different from their
neighborhoods and are suspected to be outliers. We applied
the two methods on-line with a window of size 100.

Figs. 7 and 8show the on-line effects of the two
filter-cleaners. Since the process data model for variable
V14 does not change much over time,Fig. 7 shows that
both the revised MT filter-cleaner and Hampel filter work
well for this variable. On the other hand, the process data
model of V36 is observed to change over time, especially
its mean level. When the process data model changes, the
Hampel filter often misidentifies some points (e.g., data
points from 430 to 450, from 590 to 640 and from 795 to
810) to be outliers. In contrast, the revised MT filter-cleaner
can quickly adjust its estimates of the process data and is
thus able to capture the dynamic change of the process data
model and remove outliers efficiently.

6. Conclusions

In this paper, a revised MT filter-cleaner is proposed
for on-line outlier detection and data cleaning when the

process data model is unknown. The main procedure in-
volves on-line outlier-resistant process data model estima-
tion and data cleaning. To the best knowledge of the au-
thors there are very few outlier detection and replacement
schemes that work on-line by estimating a model. To ro-
bustly estimate the process data on-line using an AR(p)
model, the revised MT filter-cleaner transforms a univari-
ate parameter estimation problem into a multivariate data
covariance matrix estimation problem. After deriving cor-
relation coefficients using a robust method, the parameters
of the AR(p) model are computed from the Yule–Walker
equations. Unlike the MT method, the proposed method es-
timates the parameters of the AR(p) model separately and
results in a high breakdown point independent of the order
of the AR(p) model. Once a process data model is obtained,
the modified Kalman filter is used to filter and clean the
data.

It is important to note that the revised MT cleaner can
be applied to clean data from autocorrelated and even non-
stationary process data. Because the process data model is
estimated on-line, the revised MT method can adaptively
capture the dynamics of the process data. Thus, the method
is applicable to both time invariant and time varying pro-
cess data. More importantly, the proposed filter-cleaner is
simple and reliable since it has a high breakdown point and
can be easily applied in practice because only one or two
parameters (e.g., window size) need to be adjusted. Numer-
ical examples show that the proposed method outperforms
the Hampel method in most cases, especially when the auto-
correlation is strong or the process data model changes over
time.
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In this paper, we have mainly studied process data
that can be approximated by autoregressive models. Only
additive type outliers have been considered here. Re-
search in progress is concerned with the treatment of
process data with nonlinear properties and other complex
distributions.
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Appendix A

Proof of Theorem 1. For the univariate dataset{yt}Nt=1 and
fixed k (k = 1,2, . . . , p), the new multivariate dataset can
be expressed as{Yt = (yt, yt−k)}Nt=k+1. If there arem out-
liers in the univariate dataset{yt}Nt=1, the maximum number
of outliers in the multivariate dataset{Yt = (yt, yt−k)}Nt=k+1
is equal to


2m, if m ≤
[
N − k

2

]

N − k, if m >

[
N − k

2

]

�

where [·] is the function to “round-down” to the near-
est integer. Therefore, if there aren outliers in {Yt =
(yt, yt−xk)}Nt=k+1, the smallest number of outliers in{yt}Nt=1
is equal to


[n
2

]
, if n <

[
N − k

2

]
andn is even

[
n+ 1

2

]
, if n <

[
N − k

2

]
andn is odd

[
N − k

2

]
, if n ≥

[
N − k

2

]
andN − k is even

[
N − k + 1

2

]
, if n ≥

[
N − k + 1

2

]
andN − k is odd.

(8)

It can be seen that thekth autocorrelation coefficient is ob-
tained once the covariance matrix of{Yt = (yt, yt−k)}Nt=k+1
is known. Hence, if the breakdown point of a multivariate lo-
cation and covariance matrix estimator ish (0 < h < 1/2),
the smallest numberl of the contaminated data (outliers)

that can cause the location and covariance matrix estimator
to arbitrary values is expressed as

l =
{

[h(N − k)], if h(N − k)− [h(N − k)] = 0,

[h(N − k)] + 1, if h(N − k)− [h(N − k)] �= 0.

From (8), the smallest percentage of contaminated data
(outliers) that can cause thekth autocorrelation coefficient
to arbitrary values is equal to


[
l

2

]
/N, if l < [

N − k

2
] andl is even

[
l + 1

2

]
/N, if l <

[
N − k

2

]
andl is odd

. (9)

If all the kth autocorrelation coefficients are known, the
AR(p) model can be calculated by solving the Yule–Walker
equations. Because all thekth autocorrelation coefficients
can be estimated separately, the breakdown point of the
AR(p) model estimation is equal to the maximum break-
down point of all thekth autocorrelation estimations. From
(9), the breakdown point of the AR(p) model estimation via
the Yule–Walker equations ish/2 whenN tends to infin-
ity.
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