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 Abstract - In this paper, a new design method of adaptive PID 
controller is proposed. The method utilizes the so- called almost strict 
positive realness (ASPR) of the plant so that the stability of the adaptive 
PID control system is guaranteed by use of K-Y lemma and Lyapunov’s 
stability theorem. An application of the proposed basic design concept to 
a practical design of adaptive tracking PID control system is also 
discussed. The result is applied to the design of PID control system of the 
first order with time delay system. The effectiveness of the proposed 
method is examined through simulations and experiments 
  
 Index Terms – PID, Adaptive PID, Time-Delay System, Process 
Control, PFC 
  

I.  INTRODUCTION 

Most PID parameter tuning procedures are done through 
the so-called off line tuning work. Further the region of 
stability with respect to PID controller parameters receives 
constraints because of the luck of enough number of tuning 
parameters.  Therefore it is interesting and important to 
consider the following two problems: (1) automatic adjusting 
or self tuning of near optimal PID controllers, and (2) 
guarantee of the stability for the control system with 3 
adjustable PID controller parameters. In fact, automatic 
tuning and stabilizing of PID controllers have over the years 
been objects for a great amount of research. The proposed 
methods proposed in the past concerning auto tuning of PID 
controllers have been stated in the well known book written 
by Astrom and Hagglund [1]. Auto tuned PID controller 
does not necessarily behaves to cover the stability of any 
type of controlled plant. In other words, PID control system 
involves complex stability phenomena because of its 
limitation concerning the small number of controller 
parameters compared to the order of the plant. As to the 
stability analysis and synthesis of PID control system, it was 
shown that Hermite-Biehler Theorem can be used not only to 
derive conditions for the existence of the set of stabilizing 
controllers but also as a convenient analytical method to 
design compensators[2,3]. However these conditions do not 
contain the clear information concerning the improvement of 
the control performance at present. 
In this paper, a new approach is proposed concerning the 
design of PID control system. This approach utilizes the 
special process characteristics called ASPRness (almost strict 
positive realness) [4,5]. It is known that the linear time 
invariant system can be stabilizable by output feedback if the 
controlled plant is ASPR [5]. The specific features of this 
approach are as follows: (1) it always gives stable PID 

control system so that it does not need to consider the 
constraints for stability region as to PID controller 
parameters and (2) the stability of the closed-loop system is 
essentially guaranteed by proportional feedback. In this 
sense, it has the same feature as that of the simple adaptive 
control (SAC) [5, 6, 7]. However, the redundancy 
concerning the integral and derivative terms contributes the 
improvement of the control performance. The effectiveness 
of the proposed method is examined by simulations and 
experiments using the first order with time delay process 
model. 

   
II. BASIC CONCEPT OF STABLE PID CONTROLLER FOR 

ASPR PLANT 
   
  Let us consider the n-th order controllable and observable 
SISO plant: 
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We assume that eq. (2.1) satisfies the following assumption. 
   
[Assumption 1] 

   Eq. (2.1) is ASPR. That is, there exist positive definite 
matrices 0>= TPP  and 0>= TQQ  such that  
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Then we have the following lemma. 

   
[Lemma 1] 

 Suppose that the assumption 1 holds. Then plant (2.1) 
can be stabilized by the following PID controller: 
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where 
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(Proof of Lemma 1) 

  Substituting eq. (2.3) into eq. (2.1) leads to the following 
equation: 
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where 
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Let 
 2*2* wkykPxxV ip

T ++=        (2.6) 
be a candidate of Lyapunov function. Then, from the 
assumption 1, we can evaluate its derivative along the 
trajectory of eq. (2.5) as follows. 
 0≤−≤ QxxV T&          (2.7) 
It means 0)(lim =

∞→
tx

t
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t

 and the boundedness of )(tw . Q.E.D. 

  
III. ADAPTIVE PID CONTROLLER 

  
  If the plant (2.1) satisfies the assumption 1, we can obtain 
stable PID controller as shown in Lemma 1.  Based on the 
result in Lemma 1, we can show that it can be possible to 
construct a PID controller even if the plant parameters are 
unknown.  
  
[Theorem 1] 
  Let us assume that the plant (2.1) satisfies the assumption 1. 
Then the controller: 
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stabilizes the plant (2.1). Here the variable PID gains 
)(),(),( tktktk iDp are tuned according to the following 

adaptive gain tuning laws: 
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where 321 ,, γγγ  are positive constants. 
(Proof of Theorem 1)  Let us define the following parameter 

estimation error vector: 
 *)()( ktkt −=ς          (3.3) 

In eq. (3.3), )(tk  is the adaptive PID gain vector and the  *k  
is the constant PID controller parameter vector which satisfies 
Lemma 1, where 
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Define the regression vector as follows. 
 )](),(),([)( twtytytz &=        (3.5) 
Then, the equation of the closed- loop system can be derived 
by substituting eq. (3.1) into eq. (2.1). This equation is given 
by 
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Let 
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be the candidate of the Lyapunov function. Then we have 
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Taking into the assumption 1, we have 
 0,0 ≠<−= xQxx

dt
dV T        (3.8) 

From eq. (3.8), 0)(lim =
∞→

tx
t

 holds and the boundedness of 

other variables are guaranteed.  Q.E.D. 
  
(c.f.) It is noted that that the adaptive gain tuning laws are 
sometimes not robust for unmodeled dynamics. In such a case, 
robust adaptive gain tuning rules such as the so-called the 
adaptive gain tuning withσ -modification term [5,6] given in 
eq.(3.9) are often used. 
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IV. APPLICATION TO THE DESIGN OF STABLE ADAPTIVE 
TRACKING PID CONTROL SYSTEMS 

  
In this section, the basic design concept of stable adaptive 

PID Controller is applied to the design of stable adaptive 
tracking PID control system. Let us consider the following 
SISO n-th order plant: 
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where )(td  denotes the input disturbance. The problem to be 
considered here is a design of stable adaptive tracking PID 
control system which achieves the tracking of the output )(ty  
to the reference input ).(tr  Suppose that the input )(tr  
satisfies the following differential equation which is known as 
the internal model: 
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where “ s ” denotes the differential operator. Define 
)(),( tvtz and tracking error )(te  as follows. 
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Then, operating )(sD  from both sides of (4.2) and taking 
eq.(4.1) into consideration lead to the following equation: 



 )()()( tzctesD T=         (4.4) 
Further we assume that the disturbance )(td  also satisfies the 
following disturbance model: 

 0)()( =tdsD               (4.5) 
From eqs.(4.1)-(4.5), we can obtain the following equation: 
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The input and the output of this system are )(tv  and )(ty , 
respectively.  However,  

 0=bc T          (4.7) 
holds in eq.(4.6). It means that the relative degree of the 
system is equal or greater that 2 so that the system (4.6) is not 
ASPR. To improve this situation, we introduce the following 

thn f −  order parallel feedforward compensator (PFC) [7,8]. 
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By combining eq. ((4.6) and eq. (4.8), the following extended 
system is obtained. 
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where 
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[Assumption 2] 
 Extended system (4.9) is ASPR. That is, eq. (4.9) satisfies the 
assumption 1. 
  
Assumption 2 means that the PFC (4.8) should be designed 

so as to the resultant extended system (4.9) becomes ASPR. 
Then we have the following theorem. 
  
[Theorem 2] 
Assume that the assumption 2 holds. Then, the following PID 
controller: 
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stabilizes the closed-loop system, where 

)()()(

)()()(

)()(

3

2

2
1

twtytk

tytytk

tytk

ai

aaD

ap

γ

γ

γ

=

=

=

&

&&

&

.     (4.11) 

  
(Proof of theorem 2) 
 It is apparent from the proof of theorem 1. (Q.E.D.) 
  
It is noted that in this case 0)(lim =

∞→
txa

t
holds. This relation 

includes 0)(lim =
∞→

te
t

. It means that the output tracking to the 

reference input )(tr  is attained.  In practical application, σ  
modification term is added to eq.(4.11) to realize the 
robustness of the algorithm. A schematic block diagram of the 
control system is derived in Fig.1.  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Fig.1 Schematic Diagram of Adaptive PID Control System with PFC. 
  
  
  

V. A CONCRETE DESIGN SCHEME OF PFC 
  
 Throughout the above consideration, we have assumed that 
the existence of PFC (4.8) which realizes the ASPRness of the 
extended system (4.9). A systematic procedure of constructing 
such a PFC was proposed by Iwai et al.[7] for minimum phase 
plant. Let γ  be the relative degree of the plant (4.6) and 
define PFC )(sG f

 as follows: 
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 iβ :  coefficients of the following Hurwitz polynomial 
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    where 0β  is the leading coefficient of (4.6). 
 δ :  small positive constant 
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Then, there exists a positive constant 0δ  such that the transfer 
function )(sGa

 of eq. (4.9) becomes ASPR for 00 >>δδ . A 
structure of above stated PFC (ladder network structure 
PFC[7]) is shown in Fig.2.  
  
  
  
  
  
  
  
  
  
  
  
  
   
  

Fig.2 Ladder Network type PFC. 
  

It is noted that PFC can be designed even if the original plant 
is non-minimum phase system though, in this case, the 
systematic approach of PFC has not existed yet. 
  
VI. APPLICATION TO THE CONTROL OF THE FIRST ORDER WITH 

TIME-DELAY SYSTEM. 
  
In the following, the proposed method is examined by 

applying it to a thermal pilot plant experimental system shown 
in Fig.3. 
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Fig.3 A schematic diagram of a temperature control system 
  
 In this case, the transfer function between steam (input) and 
temperature of the tank (output) can be approximated by first 
order plus time delay model or the so-called three parameter 
model [1, 2]: 
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When the process can be approximated as in the form of 
eq.(6.1), many PID controller parameter tuning rules have 

been proposed[2]. In this example, plant model (6.1) is used 
as a typical batch test  model of the PID controller. Further, 
we assume that the reference command is step input, and the 
form of the  disturbance added on the control input is also step 
disturbance because many actual processes can be modelled 
by (6.1) and typical PID tuning algorithm methods are based 
on this process model with step input command and 
disturbance [1, 2]. 
(1) Nominal values of the plant: 
 185.25,075.1,38.82 === LKT       (6.2) 

Reference input and disturbance are assumed to be 
 0,6)( ≥= ttr  and 0,%20)( 12 >≥≥= tttchangetd   

             (6.3) 
(2) Controller design of the proposed plant. 
(a) Reference input model and disturbance model. 
 ssDa =)(           (6.4) 
(b) Design of PFC 
 To design PFC, the time-delay is approximated by the most 
simple 10 -order Pade-approximation: 

 
Ls

e Ls

+
≈−

1
1          (6.5) 

so that the approximated plant model for eq. (6.1) becomes 
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Then the augmented plant with reference model is given by 
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and the PFC is designed by using this third-order 
approximated model. Since eq. (6.7) is minimal phase and its 
relative degree is 3, we can introduce the following second-
order PFC: 
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Note that eq. (6.7) is minimum phase with relative degree 3 
so that we can apply the systematic design procedure of PFC 
described in the section V [6, 7]. In this case, we choose the 
following PFC parameters: 
 600,3.0,1,5.0 2121 ==== ββαα     (6.9) 
This corresponds to 

300,1400,1,9,01.0 2121 ===== ββααδ  
in the ladder network form. 
(c) Adaptive parameter adjusting law. 
The control input (3.1) with parameter adjusting law (3.9) 
is used where 

 01.0,5,2,50 321 ==== σγγγ      (6.10) 
(d) Approximation of the differential element. 

In the following, derivative action is approximated as the 
output of the following element: 
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(3) Simulation results  
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 Fig.4 shows the result when we add step reference input 
whit height 6. 
  
  
  
  
  
  
  
  
  
  
  
  
  

  
Fig.4 Output y(t) for the plant (6.2) 

  
  

Fig.5 shows that the result when we give 50% parameter 
change to the plant. That is, 
 28.37,19.41,6125.1 === LTK      (6.12) 
It is noted that we used the same controller parameters and 
PFC as those of the case in Fig.4. 

  
  
  
  
  
  
  
  
  
  
  
  

  
  

Fig.5  Output y(t) with 50% plant parameter change 
  
Fig.6 shows the result when 20% step disturbance is added 
in the case of eq.(6.12). 

  
  
  
  
  
  
  
  
  
  
  
  
  

Fig.6.  Effect of step disturbance with 50% plant parameter change 
  

In Fig.7, the result for the change of the input  is given where 
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Fig.7  Output y(t) for the change of r(t) 
 

  
 
 
 
 
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Fig.8.  Change of adaptive PID gains at Fig.7 
  
 
  
(4) Experimental Result 

Finally, an experimental result of the plant is shown. This 
pilot plant is settled at Department of Chemical Engineering, 
University of Alberta. Schematic diagram of the plant is 
shown in Fig.3. Actual control input is the steam flow rate 
and the output is a temperature of the tank. All controller 
parameter values and reference input level are the same as 
those of the parameters and reference input used in the above 
stated simulation. The result of the output is given in Fig.9 
and the control input is shown in Fig.10. 
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Fig.9   Experimental result (Temperature) 
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Fig.10  Experimental result (Steam flow rate) 
  
  

VII. CONCLUSION 
  

In this report, a new adaptive stable PID control design 
scheme based on the ASPRness of the plant is proposed. The 
idea is applied to the design of adaptive PID tracking control 
of the first-order with time delay system. The effectiveness 
and robustness of the proposed method is examined through 
simulations and experiments using the pilot scale experimental 
plant. 
  
  

REFERENCES 
  
[1] Astrom, K. J. and T. Hagglund (1995). PID Control, Theory, Design and 
Tuning, Instrument Society of America, USA, second edition. 
[2] Silva, G. J., A. Datta and S. P. Bhattacharyya (2005).  PID Controllers 
for Time-Delay Systems, Birkhauser, USA 
[3] Roy, A. and K. Iqbal. (2005). Synthesis of stabilizing PID controllers for 
biomechanical models. Proceedings of 2005 IFAC World Congress, Praha 
[4] Barkana, I.(2005). Classical and simple adaptive control for 
nonminimum phase autopilot design, J. of Guidance, Control and Dynamics, 
Vol.28, No.4. pp.631-638 
 [5] Kaufman, H., I. Bar-Kana and K. Sobel (1994). Direct Adaptive Control 
Algorithms, Theory and Applications. Springer-Verlag, USA 
[6] Iwai, Z., and I. Mizumoto (1994). Realization of simple adaptive control 
by using parallel feedforward compensator, Int. J. Control, Vol.59, No.6. 
pp.1543-1565 
[7] Iwai,Z., I.Mizumoto and M.Deng(1994), A parallel feedforward 
compensator virtually realizing almost strictly positive real plant, Proceedings. 
of 33rd IEEE CDC, pp.2827-2832 

 [8] Ohtsuka,H., Z.Iwai and I.Mizumoto(2005), Output feedback sliding 
mode control with parallel feedforward compensator. Proceedings of 2005 
IFAC World Congress , Praha 
[9] Shah, S. L., Z. Iwai, I. Mizumoto and M. Deng. (1997). Simple adaptive 
control of processes with time-delay, Journal of Process Control, Vol.7, 
No.6 ,pp.439-449. 
[10] Seborg, D.E., T.F. Edgar and D.A. Mellichamp (2004), Process Dynamics 
and Control (2nd Edition), John Wiley & Sons,Inc. 
  


