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Abstract - In this paper, a new design method of adaptive PID
controller is proposed. The method utilizes the so- called almost strict
positive realness (ASPR) of the plant so that the stability of the adaptive
PID control system is guaranteed by use of K-Y lemma and Lyapunov’s
stability theorem. An application of the proposed basic design concept to
a practical design of adaptive tracking PID control system is also
discussed. Theresult is applied to the design of PID control system of the
first order with time delay system. The effectiveness of the proposed
method is examined through simulations and experiments

Index Terms — PID, Adaptive PID, Time-Delay System, Process
Control, PFC

|. INTRODUCTION

Most PID parameter tuning procedures are done through
the so-caled off line tuning work. Further the region of
stability with respect to PID controller parameters receives
constraints because of the luck of enough number of tuning
parameters. Therefore it is interesting and important to
consider the following two problems: (1) automatic adjusting
or self tuning of near optimal PID controllers, and (2)
guarantee of the stability for the control system with 3
adjustable PID controller parameters. In fact, automatic
tuning and stabilizing of PID controllers have over the years
been objects for a great amount of research. The proposed
methods proposed in the past concerning auto tuning of PID
controllers have been stated in the well known book written
by Astrom and Hagglund [1]. Auto tuned PID controller
does not necessarily behaves to cover the stability of any
type of controlled plant. In other words, PID control system
involves complex stability phenomena because of its
limitation concerning the small number of controller
parameters compared to the order of the plant. As to the
stability analysis and synthesis of PID control system, it was
shown that Hermite-Biehler Theorem can be used not only to
derive conditions for the existence of the set of stabilizing
controllers but also as a convenient analytical method to
design compensatorg[2,3]. However these conditions do not
contain the clear information concerning the improvement of
the control performance at present.

In this paper, a new approach is proposed concerning the
design of PID control system. This approach utilizes the
special process characteristics called ASPRness (almost strict
positive reaness) [4,5]. It is known that the linear time
invariant system can be stabilizable by output feedback if the
controlled plant is ASPR [5]. The specific features of this
approach are as follows: (1) it aways gives stable PID

control system so that it does not need to consider the
congtraints for stability region as to PID controller
parameters and (2) the stability of the closed-loop system is
essentially guaranteed by proportional feedback. In this
sensg, it has the same feature as that of the simple adaptive
control (SAC) [5, 6, 7]. However, the redundancy
concerning the integral and derivative terms contributes the
improvement of the control performance. The effectiveness
of the proposed method is examined by simulations and
experiments using the first order with time delay process
model.

II. BASIC CONCEPT OF STABLE PID CONTROLLER FOR

ASPR PLANT
Let us consider the n-th order controllable and observable
SISO plant:
X = Ax+bu 2.1)
y=c'x

We assume that eq. (2.1) satisfies the following assumption.

[Assumption 1]

Eq. (2.1) is ASPR. That is, there exist positive definite

matrices p=P" >0 and Q=Q" >0 such that
(A-k,bc")"P+P(A-kybc") =-Q 2.2)
Pb=c

forall k >k, > 0[5].

Then we have the following lemma.

[Lemma 1]
Suppose that the assumption 1 holds. Then plant (2.1)
can be stabilized by the following PID controller:

U =—koy—koy—k'w

(2.3)
W=y
where
k, >k, > 0,k; >0,k >0 (2.4)

(Proof of Lemma 1)
Substituting eg. (2.3) into eq. (2.1) leads to the following
eguation:



Xx=AX—kyby -k bw

(2.5)
y=c'x

where
A = A-k:bc"

Let
V =x"Px+ky? +kw? (2.6)

be a candidate of Lyapunov function. Then, from the
assumption 1, we can evaluate its derivative along the
trajectory of eq. (2.5) asfollows.

V<-x"Qx<0
It means limx(t)=0 -

t—o

(2.7)
From this, we can conclude

lim y(t) = 0 and the boundedness of W(t) . Q.E.D.
tow

I11. ADAPTIVE PID CONTROLLER

If the plant (2.1) satisfies the assumption 1, we can obtain
stable PID controller as shown in Lemma 1. Based on the
result in Lemma 1, we can show that it can be possible to
construct a PID controller even if the plant parameters are
unknown.

[Theorem 1]
Let us assume that the plant (2.1) satisfies the assumption 1.
Then the controller:

u(t) = -k, Oy -k, Oy -k ()w
W=y
stabilizes the plant (2.1). Here the variable PID gains
K, (), ko (t),k; () are tuned according to the following
adaptive gain tuning laws.
ko (1) = 72¥(1)°
ko (1) =7, YD) ¥(1)
k; (1) = 75 (OW()
where y,,7,,7, arepositive constants.

(Proof of Theorem 1) Let us define the following parameter
estimation error vector:

5(t) =k(t) -k’ (33)

Ineq. (3.3), K(t) isthe adaptive PID gain vector and the K

is the constant PID controller parameter vector which satisfies
Lemmal, where

k(t) = [k, (). ko (1), k @©)]
K™=k ko k]

(3.1)

(3.2)

(34
Define the regression vector as follows.

z(t) = [y(0), y(t), w(t)] (35
Then, the equation of the closed- loop system can be derived
by substituting eg. (3.1) into eg. (2.1). This equation is given
by

%= A'x—kyby - k'ow-bgs(t) " z(t)
y=c'x

Let
V = X"Px+k,y? +k'w? +¢(t) T (t)
[ =r" =diag[,]>0

be the candidate of the Lyapunov function. Then we have
ch\t/ =xT (AT P+PA )x— 2K, yb" Px— 2k wb" Px—2¢" zb" Px
+ 2k, yy + 2k, wv+ 25 T zy
Taking into the assumption 1, we have
c:T\t/:—xTQx<O,x;«tO (3.8)
From eq. (3.8), le X(t) =0 holds and the boundedness of

(3.6)

(3.7)

other variables are guaranteed. Q.E.D.

(c.f.) It is noted that that the adaptive gain tuning laws are
sometimes not robust for unmodeled dynamics. In such a case,
robust adaptive gain tuning rules such as the so-caled the
adaptive gain tuning withs-modification term [5,6] given in
€q.(3.9) are often used.

Ko (®) = 72Y(1)° — ok, (1)

ko (1) = 72y Y() — oo (1)

k. (t) = 75 Y(t)W(t) — ok, (t)
>0

(3.9)

IV. APPLICATION TO THE DESIGN OF STABLE ADAPTIVE
TRACKING PID CONTROL SYSTEMS

In this section, the basic design concept of stable adaptive
PID Controller is applied to the design of stable adaptive
tracking PID control system. Let us consider the following
SISO n-th order plant:

X(t) = Ax(t) + bu(t) + b,d(t)

y(t) =" x(1)
where d(t) denotes the input disturbance. The problem to be
considered here is a design of stable adaptive tracking PID
control system which achieves the tracking of the output y(t)
to the reference input r(t). Suppose that the input r(t)

satisfies the following differential equation which is known as
the internal model:
D(s)r(t)=0

(4.1)

(4.2
D(s)=s” +d,s"* +---+d,
where “ < ” denotes the differential operator. Define
z(t),v(t) and tracking error e(t) asfollows.
Z(t) = D(s)x(t)
(4.3

v(t) = D(s)u(t)

e(t) = y(t)—r(t)
Then, operating D(s) from both sides of (4.2) and taking
€g.(4.1) into consideration lead to the following equation:



D(s)e(t) =c" z(t) (4.4)
Further we assume that the disturbance d(t) also satisfies the

following disturbance model:
D(s)d(t) =0 (4.5)
From egs.(4.1)-(4.5), we can obtain the following equation:

%X(t) = AX(t) +bv(t)

(4.6)
y(t) =8 X(t)
where
A O 0
e OT l “. . b 0
X= A= .. 0 |~ |or |1
. T b: : C= 0
oo 0T - 0 1 (.) :
c —dp e —d, 0
y=¢(t)

The input and the output of this system are V(t) and Y(t),
respectively. However,

C'bh=0 (4.7)
holds in eq.(4.6). It means that the relative degree of the
systemis equal or greater that 2 so that the system (4.6) is not
ASPR. To improve this situation, we introduce the following
n, —th order parallel feedforward compensator (PFC) [7,8].

d
axf (1) = A X () + by v(t)

Y () =c¢, x(t) (4.8)

cb, >0
By combining eg. ((4.6) and eq. (4.8), the following extended
system is obtained.

L0 = AX0+D(0)

Y. (t) =y +y, (t) =c, x(t)

(4.9)

where
[x], |A 0 b - b| |¢C
S P I RN L T e ¥
[Assumption 2]

Extended system (4.9) isASPR. That is, eqg. (4.9) satisfies the
assumption 1.

Assumption 2 means that the PFC (4.8) should be designed
so as to the resultant extended system (4.9) becomes ASPR.
Then we have the following theorem.

[Theorem 2]
Assume that the assumption 2 holds. Then, the following PID
controller:

V() ==K, () Ya (1) =k (O Y2 () =k (OW()
W(t) =y, (1)

(4.10)

stabilizes the closed-loop system, where
Ko () =7,Ya (1)
Ko (1) = 75Ya () Ya (1) -
ki (t) = 75Y, ()(t)

(4.12)

(Proof of theorem 2)
It is apparent from the proof of theorem 1. (Q.E.D.)

It is noted that in this case|jmx, (t) =0holds. This relation

t—oo

includes|jme(t) =0- It means that the output tracking to the

tow
reference input I (t) is attained. In practical application, &

modification term is added to eq.(4.11) to redlize the
robustness of the algorithm. A schematic block diagram of the
control system isderived in Fig.1.

- Y,(t) (virtual Output)
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Fig.1 Schematic Diagram of Adaptive PID Control System with PFC.

V. A CONCRETE DESIGN SCHEME OF PFC

Throughout the above consideration, we have assumed that
the existence of PFC (4.8) which realizes the ASPRness of the
extended system (4.9). A systematic procedure of constructing
such a PFC was proposed by Iwai et al.[7] for minimum phase
plant. Let  be the relative degree of the plant (4.6) and

define PFC G, (s) asfollows:

G, (9 :_’faieﬁ (s) (5.1)
Gi(s)= dL(IS) (5.2
di(s):rj[(s+a,),|:1-.-,y—1 (5.3

P, coefficients of the following Hurwitz polynomial
B8 e+ BiS+ By, (5.4)
where f3, istheleading coefficient of (4.6).
o : small positive constant



Then, there exists a positive constant §, such that the transfer
function G,_(s) of eq. (4.9) becomes ASPR for 5 >5>0. A

structure of above stated PFC (ladder network structure
PFC[7]) isshown in Fig.2.
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Fig.2 Ladder Network type PFC.

It is noted that PFC can be designed even if the original plant
is non-minimum phase system though, in this case, the
systematic approach of PFC has not existed yet.

VI. APPLICATION TO THE CONTROL OF THE FIRST ORDER WITH
TIME-DELAY SYSTEM.

In the following, the proposed method is examined by

applying it to athermal pilot plant experimental system shown
inFig.3.
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Fig.3 A schematic diagram of atemperature control system

In this case, the transfer function between steam (input) and
temperature of the tank (output) can be approximated by first
order plus time delay model or the so-called three parameter
modd [1, 2]:
—Ls
S —
(9= Ts+1

When the process can be approximated as in the form of
€q.(6.1), many PID controller parameter tuning rules have

(6.1)

been proposed[2]. In this example, plant model (6.1) is used
as a typica batch test model of the PID controller. Further,
we assume that the reference command is step input, and the
form of the disturbance added on the control input is aso step
disturbance because many actual processes can be modelled
by (6.1) and typical PID tuning algorithm methods are based
on this process model with step input command and
disturbance[1, 2].

(1) Nominal values of the plant:

T =82.38,K =1.075,L = 25.185 (6.2)
Reference input and disturbance are assumed to be
r(t)=6,t >0 and d(t) = 20%changet, >t >t, >0
(6.3)
(2) Controller design of the proposed plant.
(a) Reference input model and disturbance model.
D,(s)=s (6.4

(b) Design of PFC
To design PFC, the time-delay is approximated by the most
simple g/1-order Pade-approximation:

etsn L (65)
1+Ls
so that the approximated plant model for eq. (6.1) becomes
G-— N (6.6)
1+T9)(L+Ls)
Then the augmented plant with reference model is given by
=~ G (~——GB(9)=6,(s (6.7)
G,(9)= D() (9= D() (9=6,(9

and the PFC is designed by using this third-order
approximated model. Since eg. (6.7) is minimal phase and its
relative degree is 3, we can introduce the following second-

order PFC:
GPFC(S): ﬂl(s+ﬂ2)
(s+a)(s+a,)
Note that eq. (6.7) is minimum phase with relative degree 3
so that we can apply the systematic design procedure of PFC
described in the section V [6, 7]. In this case, we choose the
following PFC parameters:
a,=05a,=1p4 =034, =600
This corresponds to
6=00L¢, =9,a, =1, 5, =1400, 5, = 300
in the ladder network form.
(c) Adaptive parameter adjusting law.
The control input (3.1) with parameter adjusting law (3.9)
is used where
71=90,7,=2,7,=50c=0.01
(d) Approximation of the differential element.
In the following, derivative action is approximated as the
output of thefollowing element:

A>>T, >0

(6.8)

(6.9)

(6.10)

(6.12)

Ts+1
(3) Simulation results



Fig.4 shows the result when we add step reference input
whit height 6.

1000 2000 2500 3000

1500
Time[s]

Fig.4 Output y(t) for the plant (6.2)

Fig.5 shows that the result when we give 50% parameter
change to the plant. That is,

K =1.6125T =41.19,L =37.28 (6.12)

It is noted that we used the same controller parameters and
PFC asthose of the case in Fig.4.

output y
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Fig.5 Output y(t) with 50% plant parameter change

Fig.6 shows the result when 20% step disturbance is added
in the case of eq.(6.12).
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Fig.6. Effect of step disturbance with 50% plant parameter change

In Fig.7, the result for the change of the input is given where

0<t<1500,r(t) = 6
1500 < t < 3000,r(t) = -1
3000 < t < 4500, (t) = 4

(6.13)

output y
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Fig.7 Output y(t) for the change of r(t)
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Fig.8. Change of adaptive PID gainsat Fig.7

(4) Experimental Result

Finally, an experimental result of the plant is shown. This
pilot plant is settled at Department of Chemical Engineering,
University of Alberta. Schematic diagram of the plant is
shown in Fig.3. Actua control input is the steam flow rate
and the output is a temperature of the tank. All controller
parameter values and reference input level are the same as
those of the parameters and reference input used in the above
stated simulation. The result of the output is given in Fig.9
and the control input is shown in Fig.10.



o 500 1000 1500 2000 2500 3000

Fig.9 Experimental result (Temperature)
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o 500 1000 1500 2000 2500 3000

Fig.10 Experimental result (Steam flow rate)

VIIl. CONCLUSION

In this report, a new adaptive stable PID control design
scheme based on the ASPRness of the plant is proposed. The
ideais applied to the design of adaptive PID tracking control
of the first-order with time delay system. The effectiveness
and robustness of the proposed method is examined through
simulations and experiments using the pilot scale experimental
plant.
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