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Abstract

This paper proposes a novel subspace approach towards direct identification of a residual model for fault detection and isolation (FDI) in
a system with non-uniformly sampled multirate (NUSM) data without any knowledge of the system. From the identified residual model, an
optimal primary residual vector (PRV) is generated for fault detection. Furthermore, by transforming the PRV into a set of structured residual
vectors, fault isolation is performed. The proposed algorithms have been applied to an experimental pilot plant with NUSM data for sensor
FDI, where different types of faults are successfully detected and isolated, fully validating the practicality and utility of the developed theory.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In most of the current literature on identification, control and
fault detection, the standard assumption is that all input and
output data are sampled at a single and uniform (regular) rate,
i.e. the sampling interval for each variable is equally spaced.
In many practical and realistic industrial situations this is of-
ten not the case. Frequently, input and output data are sampled
at multiple and non-uniform (irregular) rates, because of de-
lays in sensors and laboratory analysis. As an example, take a
polymer reactor in chemical engineering, where the composi-
tion, density, and molecular weight distribution measurements
are typically obtained after several minutes of analysis, while
the manipulated variables can be adjusted at relatively fast
rates (Gudi, Shah, & Gray, 1994; Oshima, Hashimoto, Takeda,
Yoneyama, & Goto, 1992).

Since the late 1990s, research effort has been devoted to
fault detection and isolation (FDI) in systems with uniformly
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sampled multirate data (Fadali & Emara-Shabaik, 2002; Fadali
& Liu, 1998, 1999; Zhang, Ding, Wang, & Zhou, 2002). Most
recently, Li and Shah (2004) have considered FDI for the more
general case: where each variable in a process is non-uniformly
sampled with a different rate. This represents a very general and
practical starting point. All other multirate sampling scenarios
are subsets of this case.

To perform FDI for a system with multirate data, all existing
studies (Fadali & Emara-Shabaik, 2002; Fadali & Liu, 1998,
1999; Zhang et al., 2002; Li & Shah, 2004) assume the knowl-
edge of a continuous-time (CT) model or a fast-rate discrete-
time (DT) model of the considered system. Then, by means of
lifting, a time-invariant DT model of the system with multirate
data is obtained. Furthermore, from the lifted DT model, resid-
ual models are designed and manipulated for FDI. The original
idea of lifting came from Kranc (1957) who proposed a switch
decomposition technique. Due to the work by Khargonekar,
Poola, and Tannenbaum (1985), lifting has become a standard
tool of converting a time-varying multirate system into a time-
invariant single rate system.

A CT model of a physical system is typically obtained from
a first principles model. Since establishing a first principles
model for a system depends on fully understanding its mech-
anism, such a model is not always achievable or practical for
a typical industrial process system. If this is the case, one
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cannot derive the lifted model of the system for the multi-
rate data. Consequently, no residual model can be designed
for FDI.

This paper is concerned with the extension of the Chow–
Willsky scheme (1984) for single rate data to FDI in systems
with non-uniformly sampled multirate (NUSM) data. In partic-
ular, this paper investigates direct identification of the residual
models to generate a primary residual vector (PRV) for fault
detection and a set of structured residual vectors (SRV) for fault
isolation.

Consider a physical system with multiple inputs and mul-
tiple outputs (MIMO), which is represented by a linear time-
invariant (LTI) state-space model in the CT domain. Applying
the multirate non-uniformly sampling technique (Sheng, Chen,
& Shah, 2002) to collect data from the MIMO system and
then lifting, we are led to a lifted system represented by the
state-space model, {A, B, C, D}. When calculating the residual
models for this lifted system via the Chow–Willsky scheme,
all one has to know are the extended observability matrix
and a lower triangular block Toeplitz matrix, which are func-
tions of {A, B, C, D}. One of the purposes of this paper is
to develop a subspace algorithm for identification of the two
matrices.

Originally, subspace methods of identification (SMI) were
proposed for the identification of state-space models in sin-
gle rate DT systems (Chou & Verhaegen, 1997; Moonen, De
Moor, Vandenberghe, & Vandewalle, 1989; Van Overschee &
De Moor, 1994, 1995). In recent years, SMI for systems with
multirate uniformly sampled data have been developed (Li,
Shah, & Chen, 2001), which still focus on the identification of
the lifted system matrices, e.g. {A, B, C, D}. Unlike the existing
SMI, our algorithm is residual model identification-oriented.
Therefore, this paper is a continuation of our previous work
in the area of system identification for FDI (Li, Raghavan, &
Shah, 2003; Li & Shah, 2002).

Section 2 is devoted to problem formulation. Section 3 intro-
duces the lifted model of the considered system. Identification
of residual models is investigated in Section 4. An FDI case
study based on data from an experimental plant is conducted
in Section 5, and conclusions are addressed in Section 6.

2. Problem formulation

Assume that a dynamic MIMO system in the fault-free case
is represented by the following CT state-space equation:

ẋ(t) = Ax(t) + Bũ(t) + �(t),

ỹ(t) = Cx(t) + Dũ(t), (1)

where (i) ũ(t) ∈ Rl and ỹ(t) ∈ Rm are noise-free inputs and
outputs, respectively; (ii) x(t) ∈ Rn is the state; (iii) �(t) ∈ Rn

is a Gaussian distributed white noise vector with covariance
R�; and (iv) A, B, C and D are unknown system matrices with
appropriate dimensions. It is further assumed that (i) the pair
(A, C) is observable, (ii) the pair (A, BR1/2

� ) is controllable,
and (iii) the stochastic part of A is asymptotically stable.

∼
g

g g

g

g

Fig. 1. Non-uniform and multirate sampling of the inputs and outputs.

For a given frame period, T, over the kth frame period
[kT , kT + T ), the inputs and outputs are non-uniformly sam-
pled at multirates (Sheng et al., 2002) as follows.

• An input variable is sampled g times at time instants:
{kT + t1, kT + t2, kT + t3, . . . , kT + tg}, where 0 =
t1 < t2 < · · · < tg < T .

• An output variable is sampled p times. Moreover, within
the time interval [kT + ti , kT + ti+1), for i = [1, . . . , g],
ni (�0) samples of the output variable are taken at
time instants: {kT + t1

i , kT + t2
i , . . . , kT + t

ni

i }, where
ti � t1

i < t2
i · · · < t

ni

i < ti+1 with tg+1 = T . Note that
p =n1 +n2 + · · ·+ng can be larger/less than, or equal to g.

The sampling is repeated over the next frame period. In the most
general case, among the m + l inputs and outputs, each vari-
able is sampled differently from others. However, for simplicity
of mathematical presentation and manipulation, it is assumed
that (i) the l inputs, ũ(t), and the disturbances are sampled at
one rate; and (ii) the m outputs, ỹ(t), are sampled at the other
rate. Such a non-uniform and multirate sampling is illustrated
in Fig. 1.

This paper considers the case of errors-in-variables (EIV) and
denotes the observed fault-free inputs at the time instant kT +ti ,
for i=[1, . . . , g], by u∗(kT +ti )=ũ(kT +ti )+v(kT +ti ). Simi-
larly, at the time instant kT +t

j
i , for j=[1, . . . , ni], the fault-free

outputs are denoted by y∗(kT + t
j
i )= ỹ(kT + t

j
i )+o(kT + t

j
i ),

where v( ) and o( ) are measurement errors and assumed to
be Gaussian distributed white noise vectors with respective co-
variance matrices Rv and Ro, i.e. v( ) ∼ ℵ(0, Rv) and o( ) ∼
ℵ(0, R0). Further, it is assumed that v( ) and o( ) are indepen-
dent of the initial state x(0), and are mutually independent.

If sensors are faulty, their measurements include fault-free
and fault-related values. Therefore, the measured outputs with
sensor faults, for j = [1, . . . , ni], can be represented by

y(kT + t
j
i ) = y∗(kT + t

j
i ) + fy(kT + t

j
i ), (2)

where fy(kT + t
j
i ) ∈ Rm is the fault magnitude vector with

zero and non-zero elements. To represent a single sensor fault
in the ith output sensor, for i = [1, . . . , m], the first element of
fy(kT + t

j
i ) is non-zero, but other elements are zero. Moreover,

to represent simultaneous multiple sensor faults in the outputs,
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e.g. faults in the second and the fourth output sensors, the
second and the fourth elements of fy(kT + t

j
i ) are non-zero,

but other elements are zero. The measured inputs can be repre-
sented by

u(kT + ti ) = u∗(kT + ti ) + fu(kT + ti ), (3)

where fu(kT + ti ) is the fault vector in the input sensors and
structurally similar to fy(kT + ti ).

In the EIV case, this paper considers solutions to the follow-
ing three problems:

• Given training data: {u∗(kT + ti )} and {y∗(kT + t
j
i )}, for

i = [1, . . . , g], j = [1, . . . , ni], and k = [1, 2, . . .), residual
models can be identified.

• With identified residual models and test data: {u(kT + ti )}
and {y(kT + t

j
i )}, for the same i, j, and a same or different

k, fault detection can be performed, i.e. to indicate when
fu(kT + ti ) and/or fy(kT + t

j
i ) are non-zero.

• After fault detection, the faulty sensors can be identified. This
is referred to as fault isolation.

3. The lifted model for systems with NUSM data

When inputs and outputs in the CT system described by Eq.
(1) is non-uniformly sampled at multirates, a time-varying DT
model for the system is resulted. However, grouping every g
input measurements and every p output measurements together,
respectively, can give a single rate LTI model with an increased
dimension. Herein ũ(k) = ũ(t)|t=kT and ỹ(k) = ỹ(t)|t=kT are
referred to as a vectored-input measurement and a vectored-
output measurement, respectively. Such a terminology will be
used throughout the paper.

Sheng et al. (2002) have shown the derivation of a lifted
model for a system with NUSM data by using the conventional
lifting technique. Fundamentally, this paper derives the lifted
model via integration. Lifting a system is to approximate the
integrals of functions of system variables within each frame pe-
riod under certain assumptions. Therefore, derivation of a lifted
model from a viewpoint of integration is natural, straightfor-
ward, and easily understandable.

Post-multiplying the first line of Eq. (1) by e−At (assumed
to be non-singular for any finite t) leads to

d[e−Atx(t)]
dt

= e−At [Bũ(t) + �(t)], (4)

where d( )/dt stands for the derivative of the argument with
respect to t.

Integrating Eq. (4) from t =kT to t =kT +T and performing
a straightforward manipulation, we arrive at

x(k + 1) = A x(k) +
∫ kT +T

kT

eA(kT +T −t)[Bũ(t) + �(t)] dt ,

(5)

where x(k) ≡ x(kT ), x(k + 1) ≡ x(kT + T ), and A ≡ eAT .
For t ∈ [kT , kT + T ), sampling ũ(t), �(t), and ỹ(t) as

illustrated in Fig. 1, we obtain g samples of inputs, g samples of

disturbances, and p samples of outputs. Accordingly, we form
lifted vectors:

ũ(k) = [ ũ′(kT + t1) ũ′(kT + t2) · · · ũ′(kT + tg) ]′

�(k) =

⎡
⎢⎢⎣

�(kT + t1)

�(kT + t2)
...

�(kT + tg)

⎤
⎥⎥⎦ , ỹ(k) ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ỹ(kT + t1
1 )

...

ỹ(kT + t
n1
1 )

...

ỹ(kT + t1
g )

...

ỹ(kT + t
ng
g )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

where ‘′’ indicates the transpose of an argument; ũ(k), ỹ(k),
and �(k) have lg, mp, and ng elements, respectively.

One may argue that disturbances are usually not measurable,
as a result, �(k) may not be available. In the ensuing discus-
sion we consider the use of �(k) only for the purpose of math-
ematical manipulation. As will be shown later, the effect of the
disturbances can be decoupled from the identification of the
residual models. Define a notation I� for any integer � to rep-
resent a � × � identity matrix. From the distribution of �( ), it
is inferred that �(k) ∼ ℵ(0, R�), where R� = Ig ⊗ R�, and ⊗
is the Kronecker tensor product.

For t ∈ [kT , kT + �] and 0 < � < T , integrating Eq. (4)
produces

x(kT + �) = eA�x(k) +
∫ kT +�

kT

eA(kT +�−t)[Bũ(t) + �(t)] dt .

(7)

On the other hand, the use of Eq. (7) in Eq. (1) leads to

ỹ(kT + �) = CeA�x(k) + Dũ(kT + �)

+ C
∫ kT +�

kT

eA(kT +�−t)[Bũ(t) + �(t)]. (8)

For i = [1, . . . , g] and j = [1, . . . , ni], it is assumed that ũ(t)

and �(t) are piece-wise constant within [kT + ti , kT + ti+1];
ỹ(t) is piece-wise constant within [kT + t

j−1
i , kT + t

j
i ] with

t0
i = ti . Under these assumptions, it can been derived from Eqs.

(5) and (8) that

x(k + 1) = A x(k) + B ũ(k) + E �(k),

ỹ(k) = C x(k) + D ũ(k) + J �(k), (9)

where B=[B1 B2 · · · Bg] and E=[E1 E2 · · · Eg] with Bi =∫ T −ti
T −ti+1

eAtB dt and Ei = ∫ T −ti
T −ti+1

eAt dt .
Also in Eq. (9), for i = [1, . . . , g] and j = [1, . . . , i − 1],

C =
⎡
⎣C1

...

Cg

⎤
⎦ , D =

⎡
⎣D1,1 0 . . . 0

...
. . .

...

Dg,1 Dg,2 Dg,3 . . . Dg,g

⎤
⎦ ,

J =
⎡
⎣J1,1 0 . . . 0

...
. . .

...

Jg,1 Jg,2 . . . Jg,g

⎤
⎦ with Ci =

⎡
⎣ CeAt1

i

...

CeAt
ni
i

⎤
⎦ ,
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Di,i =

⎡
⎢⎢⎣

C
∫ t1

i

0 eAtB dt + D
...

C
∫ t

ni
i

0 eAtB dt + D

⎤
⎥⎥⎦ , Ji,i = Di,i |D=0,B=I,

Di,j =

⎡
⎢⎢⎢⎣

C
∫ t1

i −tj

t1
i −tj+1

eAtB dt

...

C
∫ t

ni
i −tj

tni −tj+1
eAtB dt

⎤
⎥⎥⎥⎦ , Ji,j = Di,j |D=0,B=I.

Note that in Ji,i or Ji,j , I represents an identity matrix with
compatible dimension.

Eq. (9) is the lifted model of the system with NUSM data. It is
assumed that the frame period T is non-pathological relative to
matrix A, i.e. the difference between any two eigenvalues of A
is not equal to a multiple of i2�/T with i2 =−1. Consequently,
Eq. (9) preserves the causality, controllability and observability
of Eq. (1) (Sheng et al., 2002).

4. Identification of residual models for fault detection

Define a stacked vector: ỹ
s
(k) ≡ [ỹ′(k − s) ỹ′(k − s +

1) . . . ỹ′(k)]′ ∈ Rpms , where ms ≡ m(s + 1), and for j =
[0, . . . , s], ỹ(k − j) ∈ Rpm has the similar format to ỹ(k).
Note that in the sequel throughout the paper, any other stacked
vectors are defined analogously.

Further, we define two more stacked vectors ũs(k) and �s(k).
Manipulating Eq. (9) using the similar steps in Li and Shah
(2002) yields the following stacked equation:

ỹ
s
(k) = �sx(k − s) + Hs ũs(k) + Gs�s(k), (10)

where s is the order of the parity space (Chow & Willsky, 1984)
and is selected to be equal to n for simplicity.

Furthermore, in Eq. (10), �s = [C′ A′C′ . . . (As)′C′]′ ∈
Rpms×n is the extended observability matrix;

H s =
D 0

 s  1 B Hs 1

and G s =
J 0

s 1 E G s 1� � −

−−
−−−

are two lower triangular block Toeplitz matrices with H0 =
D, G0 = J, and �0 = C. Note that Hs ∈ Rpms×gls and Gs ∈
Rpms×gns with ns = n(s + 1) and ls = l(s + 1).

4.1. Generation of the PRV

When the sampled inputs and outputs contain measurement
noise and sensor faults, it follows from Eqs. (2)–(3) that the
lifted vectors of measured inputs and outputs will be

u(k) = u∗(k) + fu(k),

y(k) = y∗(k) + fy(k), (11)

where u∗(k) = ũ(k) + v(k) and y∗(k) = ỹ(k) + o(k). In
Eq. (11), {u(k), v(k), fu(k)} and {y(k), o(k), fy(k)} are struct-

urally identical to ũ(k) and ỹ(k), respectively. In addition,
o(k) ∼ ℵ(0, Ro), v(k) ∼ ℵ(0, Rv), with Ro = Ip ⊗ Ro ∈ Rpm

and Rv = Ig ⊗ Rv ∈ Rgl . Stacking Eq. (11) facilitates the re-
lationship between the stacked vectors:

us(k) = u∗
s (k) + fs,u(k) ∈ Rqls ,

y
s
(k) = y∗

s
(k) + fs,y(k) ∈ Rpms , (12)

where u∗
s (k) = ũs(k) + vs(k) and y∗

s
(k) = ỹ

s
(k) + os(k).

Using Eq. (12) we can rewrite Eq. (10) as

y
s
(k) − Hsus(k) = [Ipms

| − Hs]
[ y

s
(k)

us(k)

]
= �sx(k − s) − Hsfs,u(k) + fs,y(k)

+ �s(k), (13)

where �s(k) ≡ Gs�s(k) − Hsvs(k) + os(k).

Eq. (13) links the stacked vectors of faults, disturbances,
measurements, noise, and the dynamics of the lifted model
together. Three remarks are in order here.

Remark 1. If Hs and �s are available, one can extend the
Chow–Willsky scheme (1984) to generate

es(k) = W◦[Ipms
| − Hs]

[
y

s
(k)

us(k)

]
= W◦[fs,y(k) − Hsfs,u(k)] + W◦�s(k). (14)

In Eq. (14), W◦ is a matrix selected from the left null space
of �s , i.e. W◦�s = 0. As a result, the unknown state vector
x(k − s) has been completely removed.

Remark 2. Define es(k) as the PRV for fault detection, due to
the following facts:

• In the fault-free case, i.e. fs,u(k) = 0 and fs,y(k) = 0, es(k)

is reduced to e∗
s (k) = W0�s(k), which is a moving average

process of �(k), o(k), and v(k). It can be derived (Johnson
& Wichern, 1998) that e∗

s (k) ∼ ℵ (
0, Rs,e

)
with

Rs,e = W◦(GsRs,�G′
s + HsRs,vH′

s + Rs,o)W
′
0.

Rs,� = Is+1 ⊗ R�, Rs,o = Is+1 ⊗ Ro, and Rs,v = Is+1 ⊗ Rv

are covariances of �s(k), os(k) and vs(k), respectively. As
will be seen later, Rs,e can be directly estimated from the
training data.

• In the presence of any sensor faults

es(k) = e∗
s (k) + ef

s (k) ∼ ℵ(ef
s (k), Rs,e), (15)

where ef
s (k) = W0[fs,y(k) − Hsfs,u(k)] is contributed by a

fault(s).

Remark 3. Computationally, the PRV is

es(k) = W◦[Ipms
| − Hs]

[
y

s
(k)

us(k)

]
,
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indicating that the residual model for the PRV is Ms ≡
W◦[Ipms

| − Hs]. Furthermore, Ms can be uniquely deter-
mined from �s and Hs as will be illustrated in the following
sections. Hence, to obtain Ms , one only needs �s and Hs .

4.2. Identification of �s and Hs

In the fault-free case, Eq. (13) is reduced to

y∗
s
(k) − Hsu∗

s (k) = �sx(k − s) + �s(k) (16)

which can be extended to

y∗
s
(k + 1 + s) − Hsu∗

s (k + 1 + s)

= �sx(k + 1) + �s(k + 1 + s). (17)

Also from Eq. (16), it follows that

x(k − s) = �+
s (y∗

s
(k) − Hsu∗

s (k) − �s(k)), (18)

where + stands for the Moore–Penrose pseudo inverse. We
emphasize that �s is of full column rank, because the pair
(A, C) preserves the assumed observability of (A, C) in the
original CT system.

On the other hand, performing repeated recursions on Eq.
(9) shows

x(k + 1) = Lpp∗
s
(k) + L��s(k), (19)

where ũs(k) = u∗
s (k) − vs(k), ỹ

s
(k) = y∗

s
(k) − os(k), and

Eq. (18) have been employed. In addition,

Lp = [As+1 �+
s |L(2)

p ], L� = [−Lp |L(2)
� ],

p∗
s
(k) =

[
y∗

s
(k)

u∗
s (k)

]
, �s(k) =

⎡
⎣ os(k)

vs(k)

�s(k)

⎤
⎦ ∈ Rpms+gls+gns .

L(2)
p = [As B · · · A B B] − As+1 �+

s Hs and L(2)
� =

[As E · · · A E E] − As+1 �+
s Gs .

The substitution of Eq. (19) into Eq. (17) yields

y∗
s
(k + 1 + s) − Hsu∗

s (k + 1 + s)

= �sLpp∗
s
(k) + �sL��s(k)

+ Lf
��s(k + 1 + s), (20)

where Lf
� = [I | − Hs | Gs] and �s(k + 1 + s) is structurally

similar to �s(k).
Define the following gls × N block Hankel matrix for the

inputs,

Uk,s,N=

⎡
⎢⎢⎣

u(k) u(k+1) · · · u(k+N−1)

u(k+1) u(k+2) · · · u(k+N)
...

...
. . .

...

u(k+s) u(k+s+1) · · · u(k+s+N−1)

⎤
⎥⎥⎦ ,

where the first subscript of Uk,s,N indicates the time stamp of
the (1, 1) block element of the matrix, and N is a large positive

integer tending to ∞. The output and noise Hankel matrices
have similar formats, which are denoted by Yk,s,N ∈ Rpms×N ,

and �k,s,N ∈ R(pms+gls+gns)×N , respectively.
Using the block Hankel data matrices, one can expand

Eq. (20) into

Y∗
L+s+1,s,N = HsU∗

L+s+1,s,N + �sLpP∗
L,s,N

+ [�sL� Lf
�]

[
�L,s,N

�L+s+1,s,N

]
, (21)

where P∗
L,s,N =

[
Y∗

L,s,N

U∗
L,s,N

]
.

Based on Eq. (21), a standard linear least-squares problem
to derive Hs and �sLp can be defined, and solved consis-
tently by making use of standard instrumental variable concepts
(Söderström & Stoica, 1983).

Choosing L = 2s + 2 and post-multiplying Eq. (21) by an
instrumental variable matrix, Z∗′

0,s,N = 1
N

[P∗′
0,s,N P∗′

s+1,s,N ],
generate

Y∗◦ = �sLpP∗◦ + HsU∗◦ + [�sL� Lf
�]E◦, (22)

where U∗◦ = 1
N

U3s+3,s,N Z∗′
0,s,N , Y∗◦ = 1

N
Y∗

3s+3,s,N Z∗′
0,s,N , E◦ =

1
N

[
�2s+2,s,N

�3s+3,s,N

]
Z∗′

0,s,N , and P∗◦ = 1
N

P∗
2s+2,s,N Z∗′

0,s,N .

Similarly to Chou and Verhaegen (1997), we are able to show
that E◦ vanishes asymptotically, because v(k), o(k), and �(k)

are white noise vectors. As a consequence, a consistent estimate
of �sLp and Hs based on Eq. (22) is

[�̂sL̂p Ĥs] = Y∗◦[P∗′
◦ U∗′

◦ ]
([

P∗◦
U∗◦

] [
P∗′

◦ U∗′
◦
])−1

(23)

if

([
P∗◦
U∗◦

] [
P∗′

◦ U∗′
◦
])−1

exists.

The choice of L = 2s + 2 can be elaborated as follows. If
L < 2s + 2, it can be readily proved that E◦ 
= 0 as N → ∞.
However, choosing a larger L can increase the probability that[

P∗◦
U∗◦

]
[P∗′

◦ U∗′
◦ ] is not invertible, as pointed out in Chou and

Verhaegen (1997).

4.3. Numerical algorithms

Rather than Eq. (23), we need a more efficient and reli-
able algorithm to compute [�s Hs]. We perform the following
orthogonal-triangular decomposition

[P∗
0

Y∗
0

U∗
0

]
=

⎡
⎢⎣

R11 0 0 0
R21 R22 0 0
R31 R32 R33 0
R41 R42 R43 R44

⎤
⎥⎦

⎡
⎢⎣

Q1
Q2
Q3
Q4

⎤
⎥⎦ . (24)

In analogy to Li and Shah (2002), it can be derived that

Hs = [R33 0][R43 R44]+. (25)
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Furthermore, performing a singular value decomposition (SVD)
on [R31 R32][R41 R42]⊥ gives

[R31 R32][R41 R42]⊥ = Ul�V′
r ,

where ( )⊥ stands for the right null space of the argument,
e.g. [R41 R42][R41 R42]⊥ = 0. The first n vectors of Ul can
be selected as the consistent estimate of �s (up to a column
space), i.e. �s = Ul (:, 1 : n), according to Li and Shah (2002).

4.4. Optimal design of W◦

As shown by Eq. (15), the fault-contributed term in the PRV
is ef

s (k)= W◦fs,y(k)− W◦Hsfs,u(k), which should have max-
imized sensitivity to fs,y(k) and fs,u(k). While being orthogo-
nal to �s , W◦ should have maximized covariance with Hs , be-
cause it is the gain between W◦ and fs,u(k) (Li & Shah, 2002).
Note that the gain between W◦ and fs,y(k) is an identity ma-
trix, which does not give any constraints on the design of W◦.
In accordance with Golub (1973) (cf. pp. 319–320) and Rao
(1964) (cf. pp. 331–332),

W′◦ = the eigenvectors of �⊥
s HsH′

s

corresponding to non-zero eigenvalues, (26)

where �⊥
s = Ipms

− �s[(�s)
′�s]−1(�s)

′.
We next investigate the existence conditions of W◦. From its

definition, it can be easily seen that �s is a pms × n matrix
with rank n. Accordingly, the rank of the left null space of �s is
pms − n. Since W◦ is located in such a null space, it has pms

columns and pms −n=pms +pm−n independent rows. Due
to the choice of s = n and pm > 1, pms − n + pm > 0 always
holds. This indicates the availability of a non-trivial solution
to W◦. Denote Rank(W◦) ≡ pms + pm − n, which is the
dimension of the PRV.

5. An experimental case study

In this section, an experimental case study is conducted. The
experimental pilot plant is a continuous stirred tank heater sys-
tem (CSTHS) located in the Computer Process Control Lab-
oratory, at the University of Alberta. As shown in Fig. 2, the
CSTHS has two inputs, the cold water and the hot water. The
ultimate purpose of the CSTHS is to control the level and tem-
perature of the water, which are also chosen to be the outputs.

5.1. Preliminary work for FDI

Select a frame period, T = 6 s. From this pilot plant, a set of
training data covering 799 frame periods is collected to identify
the lifted model. Within each frame period [kT , kT + T ] for
k=0, 1, 2, . . ., the two inputs are sampled at instants kT, kT +3,
and kT + 4, while the two outputs are sampled at instants kT,
kT +2, and kT +5. Thus, the lifted input and output vectors are

u(k) =
[ u(kT )

u(kT + 3)

u(kT + 4)

]
∈ R6, y(k) =

[ y(kT )

y(kT + 2)

y(kT + 5)

]
∈ R6,

where g = p = 3.

Fig. 2. Physical layout of the CSTHS system with the associated hardware.

It turns out from the principle of mass and energy balances
that the dynamics of the pilot plant can be represented by a
second-order system, i.e. the order is n = 2. This results in
two identified matrices: �s ∈ R18×2 and Hs ∈ R18×18, fol-
lowed by a calculated matrix: W◦ ∈ R16×18, where s = 2 is
selected. Further, with �s , Hs , and W◦, the residual model
Ms = [W◦| − W◦Hs] ∈ R16×36 is constructed. Furthermore,
a sequence of PRVs with 16 elements each is generated, from
which the covariance matrix Rs,e ∈ R16×16 is estimated.

5.1.1. Validation of the identified residual model
In addition to the data used for identification, another se-

quence of data covering 350 frame periods in the fault-free
case was made available for model validation. From this data
sequence, the fault detection index, FD◦(k) = e′

s(k)R−1
s,ees(k),

is calculated. In this case, es(k) = e∗
s (k) ∼ ℵ(0, Rs,e), FD◦(k)

follows a chi-square distribution with degrees of freedom 16
(Johnson & Wichern, 1998). Therefore, with a pre-selected
level of significance � = 0.01, the confidence limit for FD◦(k)

is �2
0.01(16) = 32. We define the scaled fault detection in-

dex by FD(k) = FD◦(k)/32 and depict it in Fig. 3. Therein
FD(k) is within its confidence limit, 1, (with an acceptable
rate of false alarms), indicating the validity of the identified
residual model.

5.1.2. Calculation of the residual models for fault isolation
To isolate each faulty sensor, the PRV has to be transformed

into a set of SRVs. Assume that at each time, only a single
sensor is faulty. Since there are 4 sensors (2 for the inputs, and
2 for the outputs) in the CSTHS system, 4 SRVs have to be
designed, each of which is insensitive to one sensor but has
maximized sensitivity to other sensors.

More specifically, the ith SRV is made insensitive to any
fault in the ith sensor, but to have maximized sensitivity to
faults in other sensors for i ∈ [1, . . . , 4]. The sensitivity and
insensitivity of the 4 SRVs to the 4 sensors, which is also termed
as fault isolation logic, are summarized in Table 1. Therein,
Sensors 1 & 2 represent the first and second output sensors,
while 3 & 4 the first and second input sensors; a ‘0’/‘1’ means
the insensitivity/sensitivity of a SRV to a faulty sensor.
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Fig. 3. The scaled fault detection index generated from the validation data.
The dotted line represents the threshold, 1.

Table 1
Isolation logic for faulty sensors in the CSTHS system

Sensor 1 Sensor 2 Sensor 3 Sensor 4

1st SRV 0 1 1 1
2nd SRV 1 0 1 1
3rd SRV 1 1 0 1
4th SRV 1 1 1 0

Mathematically, the ith SRV is

rs,i (k) = Wies(k) = WiMs

[
y

s
(k)

us(k)

]
.

Therefore, the model for the ith SRV is WiMs . With known Ms

and isolation logic listed in Table 1, using the similar algorithms
in Li and Shah (2002), we can obtain 4 transformation matrices
Wi ∈ R7×16.

When designing the 4 SRVs for isolation, what are the con-
ditions to guarantee their existence? Similar to the analysis in
Li and Shah (2002), the answer to this question can be given
briefly as follows.

Since the model for each SRV is WiMs , the existence of a
SRV entirely depends on the existence of a non-trivial matrix
Wi , given Ms . For each output sensor fault, p(s + 1) elements
in y

s
(k) will be affected by the fault. Similarly, each input

sensor fault will affect q(s + 1) elements in us(k). To make
a SRV insensitive to one fault, one must design a Wi such
that it is orthogonal to the fault-related p(s + 1) or q(s + 1)

columns in Ms . The rank of Ms is Rank(W◦). Assume that
the aforementioned p(s + 1) or q(s + 1) columns has a rank
p(s+1) or q(s+1), it can be inferred that at least Rank(Wi )=
Rank(W◦) − p(s + 1) or Rank(Wi ) = Rank(W◦) − q(s + 1).
The existence of a SRV is ensured if Rank(Wi )�1.

In this case study, we have Rank(W◦) = 16, p(s + 1) =
3(2 + 1) = 9, q(s + 1) = 3(2 + 1) = 9. Therefore, each Wi has
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Fig. 4. Detection and isolation of a fault in Sensor 1. The sensitivity of
the isolation indices to the fault is [0 1 1 1]. The dotted line in each subplot
represents the threshold, 1, for the scaled detection and isolation indices.

Rank(Wi ) = Rank(W◦) − 9 = 7, ∀ i ∈ [1, . . . , 4], indicating
the existence of the four SRVs.

5.1.3. Decision making for FDI
Note that the confidence limit for FD(k) is 1. For real-time

sampled data, while FD(k) < 1 indicates the fault-free case,
FD(k)�1 triggers alarms for faults in any sensors.

Since rs,i (k) is a linear combination of es(k), in the fault-free
case, rs,i (k) ∼ (0, WiRs,eW′

i ) (Johnson & Wichern, 1998). In
addition, since rs,i (k) is insensitive to fault in the ith sensor,
rs,i (k) ∼ (0, WiRs,eW′

i ) if the ith sensor is faulty but the other
sensors are fault-free.

Define a fault isolation index FI◦,i (k) = rs,i (k)R−1
s,i rs,i (k),

where Rs,i = WiRs,eW′
i . Then in the afore-mentioned two

cases, FI◦,i (k) ∼ �2(7) (Johnson & Wichern, 1998). With
� = 0.01, the confident limit for FI◦,i (k) is 18.48. Scaling the
fault isolation indices to have unit confident limit results in the
scaled fault detection indices, FIi (k) = FI◦,i (k)/18.48. After
fault detection, if FIi (k) < 1 but FIj (k)�1 for {i, j ∈ [1, 4]}
and {i 
= j}, a decision that Sensor i is faulty can be made.

5.2. FDI results

FDI results for only one case are presented here, although
we have done FDI in many cases. A drift fault simulated by
0.15(t − tf ) is introduced to one instrument at tf = 337 × 6 =
2002 s. A sequence of test data from t = 0 until t = 735 × 6 =
4410 s is sampled at the same rate as the training data. The
FDI results are depicted in Fig. 4, where, FD is the scaled fault
detection index, and {FI 1, F I 2, F I 3, F I 4} are the scaled fault
isolation indices, respectively. It can be seen from the figure
that FD is beyond the unit confidence limit after the occurrence
of the fault. Therefore, fault detection has been successfully
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carried out. Moreover, FI 1 is unaffected by the fault, i.e. it is
below the confidence limit, while {FI 2, F I 3, F I 4} are affected
by the fault, i.e. they are beyond the confidence limit. The
sensitivity of the 4 fault isolation indices can be characterized
by a binary code [0 1 1 1]. Thus it can be inferred that Sensor
1 has a fault. There is a delay in detecting and isolating the
fault, because the drift fault is an incipient fault that evolves
with time very slowly.

We define the fault-to-signal ratio as follows to quantify the
sensitivity of the proposed FDI scheme,

rf/s =
∑N0

k=kf
‖fy(k)‖∑N0

k=kf
‖y∗(k)‖%.

In the ratio, ‖fy(k)‖ is the 2-norm of the lifted fault vector,
‖y∗(k)‖ is the 2-norm of the fault-free lifted output vector at
the kth frame period, kf is the frame period at which the fault
occurs, and N0 is the number of frame periods in the test data.
In this case, kf = 337, N0 = 735, and rf/s = 7.9%.

Interested readers are encouraged to contact the corre-
sponding author to obtain the training data, the validation
data and the test data. A full version of this study and
the data is downloadable from the author’s website, at:
http://www.ualberta.ca/∼slshah.

6. Conclusion

A novel subspace approach towards identification of resid-
ual models for FDI with NUSM data has been proposed. As
compared with the existing uniformly sampled multirate FDI
work, this approach is more generic and applicable to a wider
class of processes. Using the identified model, a PRV is gener-
ated for fault detection by extending the Chow–Willsky method.
This approach has been applied to an experimental CSTHS
system, where model validation has been done. Moreover, dif-
ferent types of sensor faults in the CSTHS system, including
drift and precision degradation, are successfully detected and
isolated. Therefore, the practicality and utility of the proposed
methodology have been demonstrated.
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