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Abstract

This paper consists of two parts. The first part is the development of a data-
driven Kalman filter for a non-uniformly sampled multirate (NUSM) system, including
identification of the state space model and estimation of noise covariance matrices of
the NUSM system. Algorithms for both one-step prediction and filtering are developed,
and analysis of stability and convergence is conducted in the NUSM framework. The
second part of the paper investigates a Kalman filter-based methodology for unified
detection and isolation of sensor, actuator, and process faults in the NUSM system
with analysis on fault detectability and isolability. Case studies using data collected
from a pilot scale experimental plant and numerical examples are provided to justify
the practicality of the proposed theory.

Keywords: non-uniformly sampled multirate systems, Kalman filters, one-step prediction,

filtering, unified fault detection and isolation

1 Introduction

Since the publication of Kalman’s landmark paper (Kalman, 1960), Kalman filters have be-

come ubiquitous in state estimation, system identification, adaptive control, signal process-

ing and have found many industrial applications (Sorenson, 1970, 1985; Haykin, 1996). In a

chemical engineering process, Kalman filters are frequently used either to estimate unmea-

surable process variables based on available measurements of other process variables or to
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filter the measured process variables if they are noisy. There exist Kalman filtering algo-

rithms for continuous-time (CT) systems and discrete-time (DT) systems (Sorenson, 1985).

However, most of the DT algorithms are for single rate systems only.

In many industrial processes, variables are sampled at more than one rate, i.e. mul-

tiple rates. Take a polymer reactor as an example, where the manipulated variables can

be adjusted at relatively fast rates (Gudi et al., 1994), while the measurements of quality

variables, e.g. the composition and density, are typically obtained after several minutes of

analysis. Furthermore, the sampling is termed as non-uniform, if the sampling intervals for

each variable are non-equally spaced, as is typically the case when manual samples are taken

for laboratory analysis.

First, this paper attempts to develop the Kalman filter for a NUSM system, including

algorithms for one step prediction and filtering. The development is conducted in a generic

framework: where each variable in a physical system is sampled at non-uniform rates. Non-

uniform sampling has other advantages over uniform sampling, such as always preserving

controllability and observability (uniform sampling only preserves them conditionally) in

discretization, as pointed out by Sheng et.al (2002).

Suppose that one describes a NUSM system by a lifted state space model, e.g. {A,B,C,D}.

In the development of the Kalman filter, no knowledge regarding the state space model and

the covariance matrices of process and measurement noise in the NUSM system is assumed.

Alternatively, a subspace method of identification (SMI) for {A,B,C,D} and the covari-

ances is proposed; such a SMI is a component of the data-driven Kalman filter.

The second part of this paper is concerned with the development of a novel Kalman

filter-based approach towards unified detection and isolation of sensor, actuator, and process

faults in NUSM systems. For single rate systems, Mehra and Peschon were the pioneers in

applying Kalman filters for fault detection (Mehra and Peschon, 1971). Kalman filter-based

fault detection and isolation (FDI) methods proposed before the 1990s have been surveyed

by Willsky (1976) and Frank (1990). Most recently, Keller’s work (Keller, 1999) represented

the state of art in this area. The common feature of the above-mentioned FDI schemes is

that they are applicable only for actuator and process faults and have difficulty in isolating
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sensor faults, as analyzed by White and Speyer (1984).

Recently, FDI in multirate systems has significant attracted research attention. Fadali

and Liu (1998), Fadali and Shabaik (2002), and Zhang et al. (2002) have considered FDI

issues in uniformly sampled multirate systems. Furthermore, Li and Shah (2004) and Li

et al. (2006) have developed detection and isolation methodology for sensor and actuator

faults in NUSM systems. This paper investigates a novel Kalman filter-based FDI scheme

that works for detection and isolation of faults in actuators, sensors, and process components

in NUSM systems. The relevant analysis on fault detectability and isolability is also given.

This paper is organized as follows. The problem is formulated in Section 2, where the

lifted model of a NUSM system in the fault-free case is introduced. Section 3 is mainly

devoted to the development of a SMI for NUSM systems. Note that the SMI developed in

this paper is different from that in Li et al. (2006). While the former identifies the system

matrices and covariance matrices of noise and disturbance in a NUSM system, the latter

identifies the Chow-Willsky approach-based residual model for fault detection. A complete

set of Kalman filter algorithms, including one-step prediction and filtering algorithms, are

developed in Section 4. Therein, convergence and stability analysis of the algorithms is also

performed. A novel Kalman filter-based approach towards unified detection and isolation of

sensor, actuator, and process faults in the NUSM system is investigated in Section 5. The

developed FDI scheme is applied to a pilot scale experimental plant in Section 6, where a

successful case study on actuator and sensor FDI has been conducted. Moreover, a numerical

example to show the power of Kalman filter on filtering is also provided. The paper ends

with concluding remarks in Section 7. Detailed derivation of an equation is documented in

the Appendix.

2 Problem formulation

Consider a multi-input multi-output (MIMO) system represented by the following CT state

space model:

ẋ(t) = Ax(t) + Bũ(t) + φ(t), ỹ(t) = Cx(t) + Dũ(t) (1)
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where (i) ũ(t) ∈ ℜl and ỹ(t) ∈ ℜm are noise-free inputs and outputs, respectively; (ii)

x(t) ∈ ℜn is the state; (iii) φ(t) ∈ ℜn is the disturbance vector assumed to be a stationary

Gaussian white noise vector with covariance Rφ ∈ ℜ
n×n, i.e. φ(t) ∼ ℵ(0,Rφ); and (iv)

A, B, C and D are unknown system matrices with compatible dimensions. In the sequel

throughout the paper, the notation, ℵ(0,R), is used to stand for a Gaussian white noise

vector with covariance R. It is further assumed that (i) the pair (A,C) is observable, (ii)

the pair (A,BR
1/2
φ ) is controllable, and (iii) the stochastic part of A is asymptotically stable

(Van Overschee and De Moor, 1996).

The following non-uniformly multirate sampling approach as depicted in Figure 1 is em-

ployed to collect measurements from the system described by Eqn. 1. More specifically, for
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Figure 1: Non-uniform and multirate sampling of the inputs and outputs

a given frame period, T , over the kth frame period [kT, kT + T ), the inputs and outputs are

sampled as follows.

• An output variable is sampled p times at time instants: {kT + t1, kT + t2, · · · , kT + tp},

where 0 = t1 < t2 < · · · < tp < T .

• An input variable is sampled g times. Moreover, within the time interval [kT + ti, kT +

ti+1), for i ∈ [1, p], ni samples of the input variable are taken at time instants: {kT +

t1i , kT + t2i , · · · , kT + tni

i }, where ti ≤ t1i < t2i · · · < tni

i < ti+1 and tp+1 = T . Note that
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theoretically, ni ≥ 0 and g = n1 + n2 + · · · + np can be larger/less than, or equal to

p. However, in engineering practice, usually g ≥ p, i.e. in general fewer samples of

outputs than inputs are available.

The sampling is repeated over the next frame period.

In the most general case, each of the inputs, outputs, and disturbances can be sampled

differently. However, for simplicity of mathematical manipulation and without loss of gen-

erality it is assumed that (i) the l inputs, ũ(t), and the n disturbances, φ(t), are sampled at

one rate; and (ii) the m outputs, ỹ(t), are sampled at a slower common rate. Accordingly,

the lifted vectors for inputs and outputs are constructed as follows, respectively,

ũ(k) =
[

ũ′(kT + t11) · · · ũ
′(kT + tn1

1 ) · · · ũ′(kT + t1p) · · · ũ
′(kT + tnp

p )
]′
∈ ℜlg

ỹ(k) =
[

ỹ′(kT + t1) · · · ỹ
′(kT + tp)

]′
∈ ℜmp, (2)

where ′ represents the transpose of the argument. In addition, the lifted vector for the

disturbance, φ(k) ∈ ℜng, is structurally identical to ũ(k).

At the time instant kT + ti, for i ∈ [1, p], the sampled outputs are

y(kT + ti) = ỹ(kT + ti) + o(kT + ti) ∈ ℜ
m (3)

where o( ) ∼ ℵ(0,Ro) is the measurement error and independent of the initial state, x(0).

However, at instant kT + tji for i ∈ [1, p] and j ∈ [1, ni], assume that ũ(kT + tji ) be available,

i.e. u(kT + tji ) = ũ(kT + tji ). They are outputs of controllers and are known in a closed-loop

system when one ignores the noise in the actuators.

It follows from Eqn. 3 that y(k) = ỹ(k) + o(k) ∈ ℜmp, where y(k) (or o(k)) has an

identical structure to ỹ(k). Besides, o(k) ∼ ℵ(0,Ro) with Ro = Ip⊗Ro ∈ ℜ
mp×mp, where ⊗

is the Kronecker tensor product and Il denotes an l × l identity matrix. In the sequel, any

κ×κ identity matrix is denoted by Iκ. As derived in the Appendix, the lifted model of Eqn.

1 is as follows:

x(k + 1) = A x(k) + B u(k) + W φ(k), y(k) = C x(k) + D u(k) + J φ(k) + o(k) (4)

where (i) A, B, C, D, J, and W are functions of A, B, C, D, ti, and tni

i , ∀ i ∈ [1, p]; (ii)

φ(k) ∼ ℵ(0,Rφ) with Rφ = In ⊗Rφ ∈ ℜ
ng×ng.
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It is assumed that the frame period T is non-pathological relative to matrix A. As a

consequence, Eqn. 4 does preserve the causality, controllability and observability of Eqn.

1 in line with the analysis of Sheng et al. (2002). Define ω(k) ≡ W φ(k) ∈ ℜn and

ε(k) ≡ J φ(k) + o(k) ∈ ℜmp, which are stationary Gaussian white noise vectors with

the following auto/cross-covariances: Rω = E{ω(k)ω′(k)} = W RφW
′ ∈ ℜn×n, Rε =

E{ε(k)ε′(k)} = J RφJ
′ + Ro ∈ ℜ

mp×mp, Rω,ε = E{ω(k)ε′(k)} = W RφJ
′ ∈ ℜn×mp. Note

that E( ) stands for the expectation operator. Eqn. 4 can be rewritten as:

x(k + 1) = A x(k) + B u(k) + ω(k), y(k) = C x(k) + D u(k) + ε(k) (5)

Eqn. 5 is the lifted model of a NUSM system. This paper first considers the following

problems:

• Given data: {u(1),y(1),u(2),y(2), · · · ,u(N),y(N)}, as N → ∞, develop a SMI that

identifies the system matrices, {A,B,C,D}, and estimates the covariance matrices,

Rǫ, Rω, Rω,ε, consistently;

• Develop the Kalman filter, including the one-step prediction and filtering algorithms,

for Eqn. 5.

Later in Section 5, we investigate a Kalman filter-based methodology for unified detection

and isolation of actuators, sensors, and process faults in the NUSM system.

3 Subspace Identification of the NUSM System

Since the late 1980s, due to their appealing numerical properties for systems with high

dimensionality, the SMI algorithms have been successfully applied to multivariate DT single

rate systems (Moonen et al., 1989; Verhaegen and Dewilde 1992a, 1992b; Van Oveschee and

De Moor, 1994). Recently, SMI algorithms for uniformly sampled multirate systems (Li et

al., 2001), and NUSM systems for residual models to perform FDI (Li et al., 2006) have

been reported. This paper proposes an SMI, which will have a more generic applicability in

contrast to the existing work, for the system described by Eqn. 5.
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With i > n, Γ1 = C, and H1 = D, define

Γi ≡

[

C

Γi−1A

]

∈ ℜimp×n and Hi ≡

[

D 0

Γi−1B Hi−1

]

∈ ℜimp×igl.

Since the pair (C,A) is observable, Γi has rank n. Define a stacked vector, ξ
i
(k) =

[

ξ′(k) · · · ξ′(k + i− 1)
]′
, where ξ(k) can be u(k) or y(k). Using stacked vectors, we

form block Hankel matrices,

U0,i−1 = [ui(0) · · · ui(N − 1)] =













u(0) u(1) · · · u(N − 1)
u(1) u(2) · · · u(N)

...
...

...
...

u(i− 1) u(i) · · · u(i + N − 2)













∈ ℜilg×N

and Y0,i−1 = U0,i−1|u( )=y( ) ∈ ℜ
imp×N , where N → ∞; the subscripts, “0′′ and “i − 1′′,

indicate the time stamps of the (1, 1) and (i, 1) block elements of a matrix.

For two compatible matrices, A1 and A2, we define

A1/A2 ≡ A1A
′
2 (A2A

′
2)

−1
A2 (6)

as the projection of A1 onto the row space of A2. Such a projection is the optimal prediction

of A1 based on A2 in the sense that the squared Frobenius norm, ‖A1−A2‖
2
F , is minimized

subject to: row space of A1 ⊂ row space of A2. Applying Eqn. 6, we define

Zi = Yi,2i−1/







U0,i−1

Ui,2i−1

Y0,i−1





 ∈ ℜimp×N and Zi+1 = Yi+1,2i−1/







U0,i−1

Ui+1,2i−1

Y0,i





 ∈ ℜ(i−1)mp×N ,

where Zi is the optimal prediction of Yi,2i−1 given U0,i−1, Ui,2i−1, Y0,i−1; Zi+1 is similar to

Zi; Yi,2i−1/Yi+1,2i−1 and Ui,2i−1/Ui+1,2i−1 are analogous to Y0,i−1 and U0,i−1, respectively.

The detailed derivation and consistency analysis of the SMI algorithm for Eqn. 5 is similar

to those of the N4SID (Van Overschee and De Moor, 1994). We give the main results of the

algorithm as follows:

• Using Eqn. 6, calculate Zi = [L1
i | L

2
i | L

3
i ]

[

U′
0,i−1 U′

i,2i−1 Y′
0,i−1

]′
and

Zi+1 =
[

L1
i+1| L

2
i+1| L

3
i+1

] [

U′
0,i U′

i+1,2i−1 Y′
0,i

]′
.
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• Calculate the singular value decomposition: [L1
i | L

3
i ]

[

U′
0,i−1 Y′

0,i−1

]′
= U1Λ1V

′
1,

where Λ1 is a diagonal matrix containing the non-zero singular values, and U1 and V1

are the associated left and right singular vectors, respectively. The order, n, is equal

to the number of non-zero singular values. Select Γi = U1Λ
1/2
1 (up to a column space).

• Determining the least squares solution:

[

Γ+
i−1Zi+1

Yi,i

]

=
[

K1 K2

]

[

Γ+
i Zi

Ui,2i−1

]

+ Ψi ∈ ℜ
(n+mp)×N ,

where Γ+
i is the Moore-Penrose pseudo inverse of Γi with rank of n; Ψi is the error

matrix; and Yi,i =
[

y(i) y(i + 1) · · · y(i + N − 1)
]

∈ ℜmp×N .

• The system matrices are determined as A← K1(1 : n, :), C← K1(n + 1 : mp + n, :),

where the MATLAB notation to represent a submatrix has been employed. In addition,

K2 =

















B−A Γ+
i

[

D

Γi−1B

]

Γ+
i−1Hi−1 −A Γ+

i

[

0

Hi−1

]

D−C Γ+
i

[

D

Γi−1B

]

−C Γ+
i

[

0

Hi−1

]

















∈ ℜ(n+mp)×ilg.

Observe that B and D linearly appear in K2(:, 1 : lg). Therefore, by constructing a

set of linear equations, we can solve B and D as in Verhaegen (1994).

• From Ψi, calculating its covariance matrix results in

[

Rω R′
ω,ε

Rω,ε Rε

]

⇐
1

N − 1
ΨiΨ

′
i.

4 Kalman Filter for the NUSM System

Suppose that {A,B,C,D}, Rω, Rε, and Rε,ω have been identified. Denote x̂(k|j) as the

estimate of x(k) based on data {u(1),y(1), · · · ,u(j),y(j)}, where j = k − 1 or j = k. The

Kalman filter for the NUSM system represented by Eqn. 5 should enable the estimation

of x(k) such that x(k) − x̂(k|j) has minimized covariance. Specifically, the Kalman filter

functions as a one step prediction algorithm if j = k − 1, or a filtering algorithm if j = k.
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4.1 The one-step prediction algorithm

Let the one-step prediction algorithm have the following form (Aström, 1970; Chen et al.,

1995) :

x̂(k + 1|k) = A x̂(k|k − 1) + B u(k) + L(k)
[

y(k)−C x̂(k|k − 1)−D u(k)
]

(7)

where x̂(k + 1|k) is similarly defined as x̂(k|k − 1), and L(k) is the Kalman gain to be

determined later. Define x̄(i|i − 1) ≡ x(i) − x̂(i|i − 1) as the estimation error, for i = k or

i = k + 1. Accordingly, we are led to

x̄(k + 1|k) = [A− L(k)C] x̄(k|k − 1) + ω(k)− L(k)ε(k) (8)

Define M(k) ≡ E ({x̄(k|k − 1)− E [x̄(k|k − 1)]}{x̄(k|k − 1)− E [x̄(k|k − 1)]}′) as the co-

variance matrix of x̄(k|k−1), where E{ } is the expectation of the argument. If one chooses

x̂(0| − 1) = Ex(0), then E [x̄(0| − 1)] = E[x(0) − x̂(0| − 1)] = 0. It follows from Eqn. 8

that E[x̄(k +1|k)] = [A− L(k)C] E[x̄(k|k− 1), where E{ω(k)−L(k)ε(k)} = 0. By repeat-

ing recursions, one can show E [x̄(k|k − 1)] =
∏k−1

i=0 [A− L(i)C] E [x̄(0| − 1)]. Consequently,

M(k) = E [x̄(k|k − 1)x̄′(k|k − 1)]. It turns out also from Eqn. 8 that

M(k + 1) = E[x̄(k + 1|k)x̄′(k + 1|k)] (9)

= [A− L(k)C]M(k) [A− L(k)C]′ + E{[ω(k)− L(k)ε(k)][ω(k)− L(k)ε(k)]′}

where the independence between x̄(k|k − 1) and ε(k)/ω(k) has been taken into account.

In the development of the Kalman filter, the criterion is to minimize the trace of M(k+1),

Tr{M(k + 1)}. We can prove that M(k + 1) is non-negative definite. Consequently, the

minimization of Tr{M(k + 1)} is equivalent to that of the following non-negative scalar:

α′M(k + 1)α = α′E{[ω(k)− L(k)ε(k)][ω(k)− L(k)ε(k)]′}α

+ α′{[A− L(k)C]M(k) [A− L(k)C]′}α,

where α is an arbitrary non-zero vector. Using derivations similar to those in Aström (1970),

we obtain the optimal solution of L(k) to minimize α′M(k + 1)α as follows:

L(k) =
[

A M(k)C′ + Rω,ε

]

H−1(k) (10)
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where H(k) = C M(k)C′ + Rε is positive definite, because Rε is positive definite and

C M(k)C′ is non-negative definite. Accordingly, Eqn. 9 can be rewritten as

M(k + 1) = A M(k)A′ + Rω −
[

A M(k)C′ + Rω,ε

]

H−1(k)
[

A M(k)C′ + Rω,ε

]′
(11)

At last, we define

ȳ(k|k − 1) ≡ y(k)− ŷ(k|k − 1) = C [x̄(k|k − 1)] + ε(k) (12)

as the innovation vector, where ŷ(k|k − 1) = Cx̂(k|k − 1) + D u(k) is the prediction of

y(k). Similar to Haykin (1996), we can prove that the innovation is a white noise vector

with covariance Cov[ȳ(k|k − 1)] = H(k).

Eqns. 7, 10, 11, and 12 construct the one-step prediction algorithm of the Kalman filer

given a system described by Eqn. 5. And the initial conditions are x̂(0| − 1) = E[x(0)]

and M(0) = E[x̄(0| − 1)x̄′(0| − 1)]. The estimated states x̂(k|k − 1) are unbiased, i.e.

E [x̂(k|k − 1)] = E[x(k)], because E [x̄(k|k − 1)] = 0.

4.2 Stability and convergence analysis

We analyze the stability and convergence of the one step prediction algorithm by applying

the well known results in de Souza et al. (1986). The algebraic Ricatti difference equation

(ARDE) for the Kalman filter is given by Eqn. 11. The NUSM system of Eqn. 5 has

preserved the causality, observability and controllability of the original CT system of Eqn.

1. Accordingly, (i) the pair (A,C) is detectable; and (ii) there exists no unreachable mode

of
(

A,R1/2
ω

)

on the unit circle. Under these conditions and with M(0) > 0, the ARDE has

unique stabilizing solution M(k) (poles of steady state values of A − L(k)C are inside or

on the stability boundary), and the sequence M(k) converges exponentially to M(∞) (de

Souza et al., 1986).

4.3 The filtering algorithm

A complete Kalamn filter should also include the filtering algorithm, which is usually em-

ployed to de-noise measured variables. In filtering, the goal is to compute the estimate,

x̂(k|k), from {u(1),y(1), · · · ,u(k),y(k)}, such that x̂(k|k)−x(k) has minimized covariance.
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Geometrically, x̂(k|k) is the minimum mean-square projection of x(k) onto the space

spanned by observations: Z1:k ≡ [z(1) · · · z(k)] ∈ ℜmp×k, where z(i) = y(i)−D u(i) ∈ ℜmp,

for i ∈ [1, k]. Denote x̂(k|k) ≡ x̂(k|Z
1:k

). We can infer that a one-to-one correspondence

exists between z(k) and ȳ(k|k − 1), ∀ k, by extending the analysis in Haykin (1996). As a

consequence, Z1:k = [Z1:k−1 z(k)] = Z1:k−1 ⊕ ȳ(k|k − 1), where Z1:k−1 = [z(1) · · · z(k − 1)] ∈

ℜmp×(k−1) is also a subspace, and ⊕ stands for the sum of two subspaces. Furthermore,

applying the principle of orthogonality (Haykin, 1996) can show the orthogonality between

ȳ(k|k − 1) and Z1:i, ∀ 1 ≤ i ≤ k − 1. Thus Z1:k is the direct sum of Z1:k−1 and ȳ(k|k − 1).

Accordingly,

x̂(k|k) = x̂(k|Z
1:k−1

) + x̂(k|ȳ(k|k−1)) = x̂(k|k − 1) + N(k)ȳ(k|k − 1) (13)

where x̂(k|k−1) = x̂(k|Z
1:k−1

), x̂(k|ȳ(k|k−1)) = N(k) ȳ(k|k−1) is the mean-square projection

of x(k) onto ȳ(k|k − 1), and N(k) is a gain matrix to be determined later.

The substitution of Eqn. 12 into Eqn. 13 leads to x̂(k|k) = x̂(k|k− 1) + N(k)[C x̄(k|k−

1) + ε(k)], resulting in,

x̄(k|k) = x(k)− x̂(k|k) = [In −N(k)C] x̄(k|k − 1)−N(k)ε(k) (14)

We can show E[x̄(k|k)] = 0. Therefore, the covariance of x̄(k|k) is

Cov [x̄(k|k)] = E [x̄(k|k)x̄′(k|k)]

= [I−N(k)C]M(k) [I−N(k)C]′ + N(k) Rε N′(k) (15)

where Eqn. 14, the definition of M(k), and E [x̄(k|k − 1)ε′(k)] = 0 have been utilized.

The right hand side of Eqn. 15 can be converted as M(k) −M(k)C′H−1(k)C M(k) +

[N(k)−M(k)C′H−1(k)]H(k)[N(k)−M(k)C′H−1(k)]′, where the first term is independent

of N(k). Therefore, the trace of Cov[x̄(k|k)] reaches its minimum when the non-negative

definite term, [N(k)−M(k)C′H−1(k)]H(k)[N(k)−M(k)C′H−1(k)]′, is zero. This gives the

optimal solution to N(k) as follows,

N(k) = M(k)C′ H−1(k) (16)
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which in turn results in Cov [x̄(k|k)] = M(k)−M(k)C′H−1(k)C M(k). Finally, with x̂(k|k),

ŷ(k|k) = Cx̂(k|k) + D u(k), ȳ(k|k) = y(k)− ŷ(k|k) = Cx̄(k|k) + ε(k) (17)

Eqns. 13, 16, and 17 plus the earlier developed one step prediction algorithm constitute the

Kalman filtering algorithm.

5 Kalman filter-based FDI in the NUSM system

In this section, a novel Kalman filter-based FDI methodology is investigated, which gives a

unified treatment of faults in sensors, process components and actuators. This is in contrast

to most of the existing Kalman filter-based FDI schemes, which only work for process faults

or actuator faults but not for sensor faults (White and Speyer, 1984) due to their fundamental

limitations.

5.1 Mathematical description of the NUSM system with faults

While a MIMO system can be represented by Eqn. 1 in the fault-free case, in the presence

of process faults the system should be represented by (Li et al., 2003)

ẋ(t) = Ax(t) + Bũ(t) + fp(t) + φ(t), ỹ(t) = Cx(t) + Dũ(t) (18)

In Eqn. 18, fp(t) ∈ ℜ
n is the fault magnitude vector with zero or non-zero elements. Consider

the following quadruple tank system shown in Figure 2 as an example, where leaks in each

tank, denoted by {δ1, δ2, δ3, δ4}, are typical process faults. In this system, if only one tank,

e.g. Tank 1, leaks, fp(t) = [δ1 0 0 0]′. If two tanks, e.g. Tanks 2 and 4, leak simultaneously,

then fp(t) = [0 δ2 0 δ4]
′. In addition, any other leak scenarios can be similarly represented

in terms of fp(t).

We apply the NUSM sampling approach to discretize Eqn. 18, where fp(t) is “sampled”

at the same rate as the process disturbance φ(t). Similarly, we can show that the resulting

lifted model is

x(k + 1) = A x(k) + B ũ(k) + W fp(k) + W φ(k), ỹ(k) = C x(k) + D ũ(k) (19)

12



Pump 1

v 1

Pump 2

v 2y 1

y 2

leak
δ3

leak
δ4

leak
δ1

leak
δ2

Tank 1

Tank 2

Tank 3
Tank 4

Figure 2: Schematic of the quadruple tank system

where fp(k) ∈ ℜng is the lifted vector of fp(t) and analogous to φ(k) in structure.

We also consider the presence of faults in actuators and sensors in Eqn. 19 as depicted by

Figure 3. Therein, the measured outputs of the system with sensor faults are y(kT + ti) =

+
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Figure 3: Schematic diagram of a system with faults in actuator, process components and

sensors

y∗(kT +ti)+fy(kT +ti), where y∗(kT +ti) = ỹ(kT +ti)+o(kT +ti) is the fault-free value, and

fy( ) is the fault magnitude vector similar to fp( ). For instance, if the first and third sensors

are faulty, the first and third elements in fy(kT + ti) are non-zero, while other elements are

zero. The inputs to the plant in Figure 3 are u(kT + tji ) = u∗(kT + tji ) + fu(kT + tji ), where,

for j = [1, ni], u∗(kT + tji ) are the fault-free values; fu(kT + tji ) is the fault vector in the

actuators and analogous to fp( ) (fy( )) in structure. While u∗(kT + tji ) are available (they

are outputs of controllers), u(kT + tji ) are not.
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We define u(k) = u∗(k) + fu(k) ∈ ℜlg, y(k) = y∗(k) + fy(k) = ỹ(k) +o(k) + fy(k) ∈ ℜmp,

where fy(k) is similarly defined as y(k) (y∗(k)), and so is fu(k) to u(k) (u∗(k)). Accordingly,

we rewrite Eqn. 19 as

x(k + 1) = A x(k) + B u∗(k) + B fu(k) + W fp(k) + ω(k)

y(k) = C x(k) + D u∗(k) + D fu(k) + fy(k) + ε(k) (20)

which describes the dynamics of the NUSM system in the presence of noise, disturbances,

and faults. With Eqn. 20, we state the FDI problem as follows:

Given data: {u∗(kT + tji )} and {y(kT + ti)}, for i = [1, p], j = [1, ni], and k = [1, 2, · · ·],

FDI is to indicate when and which element(s) in fp( ), fu( ), and/or fy( ) begin to be non-zero.

5.2 Fault detection in the NUSM system

We substitute Eqn. 20 into the one step prediction algorithm, where L(k) is replaced by its

steady value, L. Consequently,

x̂(k + 1|k) = A x̂(k|k − 1) + B u∗(k) + L ȳ(k|k − 1) (21)

ŷ(k|k − 1) = C x̂(k|k − 1) + D u∗(k)

where ȳ(k|k − 1) = Cx̄(k|k − 1) + D fu(k) + fy(k) + ε(k). Subtracting Eqn. 20 by Eqn.

21 produces x̄(k + 1|k) = Ā C x̄(k|k − 1) + B̄ fu(k)− L fy(k) + W fp(k) + ω(k)− L ε(k),

where Ā ≡ A− L C and B̄ ≡ B− L D.

From the preceding equation it can be shown that

x̄(k|k − 1) = x̄∗(k|k − 1) + x̄f (k|k − 1) (22)

where, x̄∗(k|k − 1) = Ā
k
x̄(0| − 1) +

∑k−1
i=0 Ā

k−1−i
[ω(i)− L ε(i)], and

x̄f (k|k − 1) =
k−1
∑

i=0

Ā
k−1−i

[B̄ fu(i)− L fy(i) + W fp(i)].

Finally, the substitution of Eqn. 22 into Eqn. 21 produces

ȳ(k|k − 1) = ȳ∗(k|k − 1) + ȳf (k|k − 1) (23)
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where ȳ∗(k|k − 1) = C Ā
k
x̄(0| − 1) + C

∑k−1
i=0 Ā

k−1−i
[ω(i)− L ε(i) ] + ε(k) ∼ ℵ [0,H(k)]

(Haykin, 1996); and ȳf (k|k− 1) = C
∑k−1

i=0 Ā
k−1−i

[B̄ fu(i)−L fy(i) + W fp(i)] + D fu(k) +

fy(k).

It has been shown in Section 4.2 that Ā has stable eigenvalues. With eigen decomposition:

Ā = UAΛAU−1
A , where ΛA is a diagonal matrix containing all the non-zero eigenvalues and

UA are the associated eigenvectors, we can rewrite Eqn. 23 as

ȳf (k|k − 1) = C UA

k−2
∑

i=0

Λk−1−i
A U−1

A [B̄ fu(i)− L fy(i) + W fp(i)]

+ C[B̄ fu(k − 1)− L fy(k − 1) + W fp(k − 1)] + D fu(k) + fy(k).

Select a matrix, W◦, from the left null space of C UA, i.e. W◦C UA ≡ 0. Multiplying

ȳ(k|k − 1) by W◦, we define

e(k) ≡W◦ȳ(k|k − 1) = e∗(k) + ef (k) (24)

as the primary residual vector (PRV) for fault detection, where e∗(k) = W◦ȳ
∗(k|k − 1) =

W◦ C[Imp| − L][ω′(k − 1) ε′(k − 1)]′ + W◦ ε(k) is the fault-free component, while

ef (k) = W◦ȳ
f (k|k − 1)

= W◦[D |C B̄ |C W | Imp| −C L]
[

f ′u(k) f ′u(k − 1) f ′p(k − 1) f ′y(k) f ′y(k − 1)
]′

is the fault-contribution component. Note that e∗(k) only has terms with constant coeffi-

cients. Therefore, it is a stationary white noise vector. We can show that e∗(k) ∼ ℵ [0,Re],

where Re = W◦H(∞)W′
◦ ∈ ℜ

n0×n0 with H(∞) being the steady value of H(k).

No matter what the order, n, of the system is, ef (k) is always a first order moving

average (MA) process of fu(k), fy(k), and fp(k). This ensures simplicity of the PRV. In

ef (k), denote the gain between W◦ and
[

f ′u(k) f ′u(k − 1) f ′p(k − 1) f ′y(k − 1)
]′

by Θ1 ≡

[D | C B̄|C W| − C L]. Besides W◦C UA = 0, each row of W◦ should be designed such

that the ratio

λi =
W◦(i, :)Θ1Θ

′
1W

′
◦(i, :)

W◦(i, :)H(∞)W′
◦(i, :)

is maximized (the gain between W◦ and fy(k) is an identity matrix, which cannot impose

any constraint on W◦). The designed PRV will have maximized sensitivity to any faults,

while having minimum covariance.
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Denote V◦ ≡ Imp −C UA (C UA)+. In line with the work by Frank (1994), we arrive at

W′
◦ = the eigenvectors related to n0 non-zero general eigenvalues of matrix pair

{V′
◦Θ1Θ

′
1V◦,V

′
◦H(∞)V◦} (25)

Notice that since n0 is usually much larger than 1, the existence of W◦ can be guaranteed

as analyzed in Li and Shah (2002).

In the absence of faults, e(k) = e∗(k) ∼ ℵ [0,Re]. Otherwise, e(k) ∼ ℵ
[

ef (k),Re

]

. Define

a scalar fD(k) = e′(k)R−1
e e(k), which follows a central/non-central chi-square distribution

with n0 degrees of freedom in the normal/faulty case (Johnson and Wincher, 1998). Given

a threshold, χ2
β(n0), for fD(k), where β is a level of significance. While fD(k) < χ2

β(n0)

indicates the absence of fault, fD(k) ≥ χ2
β(n0) triggers fault alarms.

5.3 Fault isolation

To isolate each faulty actuator, sensor, or process component, one needs to transform the

PRV into a set of structured residual vectors (SRVs) (Li and Shah, 2002). For simplicity

of presentation, first assume that at each time, only a single actuator, sensor, or a process

component is faulty. Later the isolation method will be extended to the case where multiple

faults occur simultaneously.

5.3.1 Isolation of a single fault

There are l actuators, m sensors and n process components in the system of Eqn. 20. We

name a sensor, an actuator, or a process component as an element. Similarly to Li and Shah

(2002), we design (l + m + n) SRVs, where the ith SRV, ri(k), is insensitive to a fault in the

ith element, but most sensitive to faults in other elements, for i ∈ [1, l + m + n]. The sen-

sitivity/insensitivity of the SRVs to the faulty elements, also termed as fault isolation logic,

are summarized in Table 1, where a “0”/“1” means the insensitivity/maximized sensitivity

of a SRV to a faulty element. In addition, f i
u( )/fh

p ( )/f j
y ( ) stands for the fault in the ith

actuator/hth process component/jth sensor, for i ∈ [1, l]/h ∈ [1, n]/j ∈ [1,m].

Denote Θ◦ ≡ W◦[D |C B̄ |C W | Imp| − CL] ∈ ℜn0×(2lg+ng+2mp). Mathematically,
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SRVs f 1
u( ) · · · f l

u( ) f 1
p ( ) · · · fn

p ( ) f 1
y ( ) · · · fm

y ( )

r1(k) 0 1 · · · · · · · · · · · ·
... · · · · · ·

... 1
. . .

...
...

...
...

...
...

...

rl(k)
...

. . . 0
...

...
...

...
...

...

rl+1(k)
...

... 1 0
...

...
...

...
...

...
...

...
...

. . . . . .
...

...
...

...

rl+n(k)
...

...
...

... 1 0
...

...
...

rl+n+1(k)
...

...
...

...
...

. . . 0
...

...
...

...
...

...
...

...
... 1

. . .
...

rl+n+m(k)
...

...
...

...
...

...
... · · · 0

Table 1: Sensitivity and insensitivity of the l + m + n SRVs to faulty elements

the ith SRV is ri(k) = Wie(k) = r∗i (k) + r
f
i (k), where Wi is a transformation matrix,

r∗i (k) = Wie
∗(k) ∼ ℵ(0,Re,i) with Re,i = WiReW

′
i, and

r
f
i (k) = Wie

f (k) = WiΘ◦

[

f ′u(k) f ′u(k − 1) f ′p(k − 1) f ′y(k) f ′y(k − 1)
]′

.

The fault model for the ith SRV is WiΘ◦. And we split Θ◦ into two parts, e.g. Θ◦ =

[Θ◦,i| Θ
⊥
◦,i], where Θ◦,i denotes those columns associated with a fault in the ith element, and

Θ⊥
◦,i the remaining columns.

In the presence of a single sensor fault, fu(k), fu(k − 1), and fp(k − 1) are zero, but

[f ′y(k) f ′y(k − 1)]′ has 2p non-zero elements. In this case, Θ◦,i has 2p columns. If a single

actuator fault occurs, fy(k) = 0, fy(k− 1) = 0, and fp(k− 1) = 0, but [f ′u(k) f ′u(k− 1)]′ has

2g non-zero elements. Consequently, Θ◦,i has 2g columns. Furthermore, in the presence of a

single process component fault, i.e. fp(k− 1) 6= 0, we can infer that Θ◦,i has g columns. We

introduce nθi
to represent the number of independent columns of Θ◦,i in each of the three

fault cases. Then the maximum value of nθi
can be 2p, 2g, or g.

According to the isolation logic, it is required that Wi is orthogonal to Θ◦,i but has

maximized covariance with Θ⊥
◦,i. Denote Vi ≡ In0

−Θ◦,i

(

Θ◦,i

)+
. Using similar algorithms

to calculate W◦, we can obtain the transformation matrices,

W′
i = the eigenvectors related to non-zero general eigenvalues of matrix pair
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{V′
iΘ

⊥
◦,i

(

Θ⊥
◦,i

)′
Vi,V

′
iReVi} (26)

∀ i ∈ [1, l + m + n]. Note that Wi is (n0 − nθi
) × n0-dimensional. To assure a non-trivial

solution to Wi, n0 − nθi
≥ 1 must be guaranteed (Li and Shah, 2002).

After fault detection, it follows from the pre-determined isolation logic that

ri(k) ∼

{

ℵ(0,Re,i), if the ith element fails;

ℵ(rf
i (k),Re,i), if any other element fails;

where Re,i = WiReW
′
i. Define a scalar fault isolation index fI,i(k) = ri(k)R−1

e,i ri(k). If

fI,i(k) follows a chi-square distribution with nθi
degrees of freedom, but fI,j(k) does not for

i ∈ [1,m + l + n] and j 6= i, then the ith element is faulty. Otherwise, any other but the

ith element is faulty. It must be addressed that in compliance with the fault isolation logic

presented in Table 1, the ith element corresponds to the ith actuator for i ∈ [1, l]; the (i− l)th

process component for i ∈ [l, l + n]; or the (i− l − n)th sensor for i ∈ [l + n, l + n + m].

5.3.2 Isolation of multiple faults

To isolate multiple faults, one has to use a different isolation logic (Li and Shah, 2002) from

the one earlier proposed for a single fault. For the system described by Eqn. 20, any combi-

nation of the m + l + n elements can be simultaneously faulty at each time. Theoretically,

there are
∑l+n+m

i=1 C l+n+m
i fault scenarios, where C l+n+m

i denotes the combination of i from

l+n+m. Note that different fault scenarios occur with different probabilities (Li and Shah,

2002). When one designs an isolation approach, there is no need to consider those scenarios

that occur with a very small probability. Instead, only the scenarios that are most likely

to occur deserve one’s consideration. Therefore, before conducting the design, one has to

determine the maximum number, fmax, of multiple faults, and such a number is usually much

smaller than l + n + m. This can greatly simplify the design of isolation logic for multiple

faults.

For instance, a second order system (n = 2) with two actuators (l = 2) and three sensors

(m = 3) has l+n+m = 7 process elements in total. Suppose that each element has an equal

reliability of 95% (In the most general case, each element can have a different and time-

varying reliability). Using the formula developed in Li and Shah (2002), we can evaluate
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the probabilities, Pf (q, 95%, 7, k), that q ∈ [1, 7] elements fail simultaneously. We list them

in Table 2. We set up a threshold, e.g. ǫ = 4%, for Pf (q, 95%, 7, k). Then only those fault

# of faulty elements: q 1 2 3 4 5 6 7
Probability:

Pf (q, 95%, 7, k)
0.2573 0.0406 0.0036 0.0002 0.0000 0.0000 0.0000

Table 2: Probabilities for 1 ≤ q ≤ 7 elements to become simultaneously faulty in a system

having 7 process elements

scenarios that can occur with a probability higher than this threshold need to be considered.

In Table 2, the probability for one or two elements to fail is higher than the threshold, while

the probability for three or more elements to simultaneously fail is much smaller than the

threshold. Therefore, fmax = 2 can be determined. Moreover, an isolation logic to isolate

one up to two simultaneously faulty elements is chosen and illustrated in Table 3.

f 1
u( ) f 2

u( ) f 1
p ( ) f 2

p ( ) f 1
m( ) f 2

m( ) f 3
m( )

r1(k) 0 0 0 0 1 1 1
r2(k) 1 0 0 0 0 1 1
r3(k) 1 1 0 0 0 0 1
r4(k) 1 1 1 0 0 0 0
r5(k) 0 1 1 1 0 0 0
r6(k) 0 0 1 1 1 0 0
r7(k) 0 0 0 1 1 1 0

Table 3: Isolation logic for 1 up to 2 faulty elements in a system having 7 elements

For the seven elements, there are C7
1 = 7 likely scenarios that a single element becomes

faulty, and C7
2 = 21 scenarios that two elements become simultaneously faulty. Therefore,

in total, there are 7 + 21 = 28 fault scenarios that need to be uniquely isolated. Based on

the isolation logic listed in Table 3, a 7-digit binary code, e.g., J = r1(k) × r2(k) × r3(k) ×

r4(k)× r5(k)× r6(k)× r7(k), is generated (Qin and Li, 1999; Li and Shah, 2002). And the

single faulty sensor can be uniquely isolated using the following logic:

If J = J1 = 0 1 1 1 0 0 0, then the 1st element (the first actuator) is faulty;
...

If J = J7 = 1 1 1 0 0 0 0, then the 7th element (the third sensor) is faulty;
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because each binary code differs from the others. Secondly, according to the isolation logic,

responses of the 7 SRVs to any 2 simultaneously faulty elements, e.g., the ith and the jth

elements, ∀ {i, j = [1, 7]} ∩ {i 6= j}, can be described by J = Ji ∨ Jj, where the ∨ stands for

binary ‘or’ operation. Therefore, we can use the following logic to isolate 2 simultaneously

faulty sensors

If J = J1 ∨ J2 = 0 1 1 1 1 0 0, then the 1st and 2nd elements are faulty;
...
If J = Ji ∨ Jj, for i, j = [1, 7] , i 6= j, then the ith and jth elements are faulty.

We obtain 21 unique binary codes, making any combination of 2 simultaneously faulty

elements isolable. We summarize the first half of the 28 different binary codes in Table

4 due to limited space.

faulty elements 1 2 3 4 5 6 7 1,2 1,3 1,4 1,5 1,6 1,7 2,3 2,4
r1(k) 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0
r2(k) 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0
r3(k) 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1
r4(k) 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1
r5(k) 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1
r6(k) 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1
r7(k) 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1

Table 4: Binary codes corresponding to the first 14 fault scenarios

With the chosen isolation logic, seven transformation matrices Wi, ∀ i = [1, 7], can be

calculated. Finally, calculating seven SRVs and their associated scalar isolation indices,

fI,i(k), on-line and real-time, one can conduct fault isolation using the similar steps as stated

in Section 5.3.1.

5.4 Analysis on fault detectability and isolability

Detectability and isolability of a single fault is analyzed in this subsection. The analysis can

also be extended to multiple faults.
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5.4.1 Fault detectability conditions

In the PRV, note that

ef (k) = W◦[D |C B̄ |C W | Imp| −C L]
[

f ′u(k) f ′u(k − 1) f ′p(k − 1) f ′y(k) f ′y(k − 1)
]′

The detectability of a fault is ensured if ef (k) is always non-zero.

In the presence of a single actuator fault, ef (k) = W◦[D |C B̄]
[

f ′u(k) f ′u(k − 1)
]′
. Since

[f ′u(k) f ′u(k − 1)]′ has 2g non-zero elements, ef (k) is a linear combination of 2g columns of

W◦[D |C B̄] specified by the non-zero elements. Apparently, ef (k) 6= 0 requires that the 2g

columns in W◦[D |C B̄] related to the non-zero elements in [f ′u(k) f ′u(k − 1)]′ are linearly

independent.

In the presence of a single process component fault, ef (k) = W◦ C W fp(k − 1), where

fp(k − 1) has g non-zero elements. It can be similarly understood that fault detectability

is guaranteed if the g columns in W◦C W related to the fault are linearly independent. In

the presence of a single sensor fault, ef (k) = W◦[ Imp| −C L]
[

f ′y(k) f ′y(k − 1)
]′
. One can

assure fault detectability if the 2p columns in W◦[ Imp| −C L] associated with the fault are

linearly independent.

5.4.2 Fault isolability conditions

Conditions for fault isolability are sensitive to a chosen isolation logic. Herein, we investigate

the conditions related to the isolation logic listed in Table 1. To isolate a fault in the ith

actuator (i ∈ [1, l]), we should ensure that

r
f
i (k) = Wi W◦[D |[C B̄]

[

f ′u(k) f ′u(k − 1)
]′

= 0,

but for any {j ∈ [1, l +n+m]}
⋂

{j 6= i}, r
f
j (k) = Wj W◦[D |C B̄]

[

f ′u(k) f ′u(k − 1)
]′
6= 0.

This requires that the 2g columns in Wj W◦[D |C B̄] associated with the fault are linearly

independent. It can be similarly inferred that to isolate a single component fault, the g

columns in WjW◦C W associated with the fault must be linearly independent. At last, if

the 2p columns in Wj W◦[Imp| − C L] associated with the fault are linearly independent,

then a single faulty sensor can be always isolated.
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6 A Numerical Example and An Experimental Case

Study

In this section, a numerical example and an experimental case study are conducted to test

validity of the proposed Kalman filter algorithm in filtering noisy process measurements and

the utility of the Kalman filter-based FDI scheme, respectively.

6.1 A numerical example

In this numerical example, the power of the Kalman filter at estimating physical variables

from noisy NUSM data is demonstrated. A quadruple tank system(Ge and Fang, 1988) is

used as a test bed, which is depicted in Figure 4. In the system, four tanks with the same
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Figure 4: Schematic of a quadruple tank system

height and same cross section are serially connected by outlets that have an identical cross

section.

Based on the principle of mass balance, the tank system can be modelled by a nonlinear

differential equation. After linearizing the equation at a steady operating point, one can

describe the tank system (Ge and Fang, 1988) by

ẋ(t) = Ax(t) + Bũ(t) + φ(t), ỹ(t) = Cx(t)

where the input is the water flowing into Tank 1 and simulated by ũ(t) = 2500
9

(1 + 0.36sint)

cm3 per second. In addition, x(t) is the state variable vector whose ith element, xi(t),

represents the level of the ith tank physically, for i ∈ [1, 4]; ỹ(t) is the output vector; and φ(t)

is the process disturbance vector, accounting for the linearization and modelling errors. It is
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assumed that φ(t) is a stationary Gaussian white noise vector with covariance Rφ = 0.12I4.

Moreover, in the preceding equation, the parameter matrices are

A =











−0.0457 0.0457 0 0
0.0457 −0.0914 0.0457 0

0 0.0457 −0.0914 0.0457
0 0 0.0457 −0.0914











, B =











0.0020
0
0
0











,

and C = I4.

When one takes samples of ỹ(t), due to the inevitable measurement noise, one fails to

obtain the exact values. However, since the newly developed Kalman filter can estimate the

value of x(t) at different time instants: t = kT from the NUSM data, it turns out from

ỹ(t) = Cx(t) that the estimate of ỹ(k) = Cx(t)|t=kT can be achieved. Especially, if C is an

identity matrix, simply ỹ(k) = x(t)|t=kT = x(k).

Choosing an initial value of the state, x(0) = [1 1 1 1]′, we use the function ‘ode45’ in

MATLABTM to simulate the tank system, generating the CT signals {ỹ(t), ũ(t)}. Moreover,

we select a frame period T = 0.5 minute. For k = [0, 1, · · ·), within the period [kT, kT + T ],

we sample ũ(t) at t = kT and t = kT +0.2; and ỹ(t) at t = kT and t = kT +0.3, respectively,

obtaining the lifted input and output vectors:

ũ(k) =
[

ũ′(kT ) ũ′(kT + 0.2)
]′
∈ ℜ2, ỹ(k) =

[

ỹ′(kT ) ỹ′(kT + 0.3)
]′
∈ ℜ8.

We introduce Gaussian white noise with covariance R0 = 22I4 to the outputs, y( ). In

addition, we suppose to know ũ(k). Thus, we have y(k) = ỹ(k) + o(k) and u(k) = ũ(k).

We generate 1000 samples of lifted data: {u(k),y(k)}, for k = 1, 2, · · · , 1000, to identify

the lifted model of the system, as described by Eqn. 5, including the covariance matrices,

Rε, Rω and Rε,ω. Subsequently, from these identified matrices, we construct the filtering

algorithm of the Kalman filter. The system and covariance matrices of the lifted model and

the matrices in the filtering algorithm are not reproduced herein due to lack of space.

A set of test data within 2000 frame periods is generated to estimate the state vector

x(k). We present the exact values x(k) (the first column), the estimated values x̂(k|k) (the

second column), and the errors between the exact and the estimate x̄(k|k) = x(k)− x̂(k|k)

(the third column) together in Figure 5. Further, in each column of the figure, the ith subplot
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corresponds to ith element of the vector. It must be emphasized that x̂(k|k) is the optimal

estimate of the outputs, ỹ(t) at t = kT , i.e. y(k) = x̂(k|k), from the earlier analysis.
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Figure 5: State estimation results in the numerical example

We define rn/S =
∑N0

k=1 ‖o(k)‖/‖ỹ(k)‖% and ρx̄/x =
∑N0

k=1 ‖x̄(k|k)‖/
∑N0

k=1 ‖x(k)‖% to

quantify the noise-to-signal ratio in the lifted output vectors, and state estimation error,

respectively. With N0 = 2000, we obtain rn/s = 14.1% and ρx̄/x = 0.52%. This indicates

that even with pretty high noise-to-signal ratio, the filtering algorithms do give precise

estimates of the states.

6.2 The experimental pilot plant

The experimental pilot plant is a continuous stirred tank heater system (CSTHS) located

in the Computer Process Control Laboratory, at the University of Alberta. A schematic

diagram of the CSTHS is given in Figure 6, where the cold water flowing continuously through

the tank is heated by high temperature steam passing through a coil. Four thermocouples,

e.g., TT1, TT2, TT3 and TT4, installed at different locations of the long exit pipe provide

temperature signals.

The CSTHS system has two inputs (l = 2): the cold water and steam flow rates. The

inputs are manipulated by respective controllers, and the outputs from the controllers drive
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Figure 6: Schematic diagram of the CSTHS

the actuators: two valves. We select four variables as the outputs (m = 4): the water level

in the tank and temperatures {TT1, TT2, TT3}. Note that TT1 is the temperature of the

water in the tank, and TT1 6= TT2 6= TT3 due to time delays. The ultimate purpose of the

CSTHS is to regulate the outputs.

6.3 Identification of the lifted model of the pilot plant

Select a frame period, T = 6 secs. From this pilot plant, a set of training data covering 799

frame periods is collected to identify the lifted model. Within each frame period [kT, kT +T ]

for k = 0, 1, · · ·, the two inputs are sampled at instants kT , kT +3, and kT +4, while the four

outputs are sampled at instants kT and kT +5. Thus, the lifted input and output vectors are

u(k) =
[

u′(kT ) u′(kT + 3) u′(kT + 4)
]′
∈ ℜ6, y(k) =

[

y′(kT ) y′(kT + 5)
]′
∈ ℜ8, where

g = 3 and p = 2. From {u(k),y(k)} for k = 1, · · · , 799, three data matrices, U0,i−1, Y0,i−1,

and Yi,2i−1 with i = 3, are formed. Subsequently, applying the developed SMI, we estimate,

A ∈ ℜ2×2, B ∈ ℜ2×6, C ∈ ℜ8×2, D ∈ ℜ8×6, Rǫ ∈ ℜ
8×8, Rω ∈ ℜ

2×2, and Rω,ε ∈ ℜ
2×8.

We use the one step prediction algorithm with a steady Kalman gain combined with

W◦ ∈ ℜ
6×8 to generate the PRV for fault detection. For simplicity, only faults in actuators

and sensors are considered in this case study. Consequently, six (l + m = 6) SRVs for fault
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isolation are designed by employing the isolation logic in Table 1. The ith SRV is insensitive

to fault in the ith element, but has maximized sensitivity to faults in other elements, for

i ∈ [1, 6]. We calculate Wi ∈ ℜ
1×6 and the covariances, Re ∈ ℜ

6×6 and Re,i ∈ ℜ
1×1, for the

PRV and SRVs.

6.4 FDI results

FDI results for only one fault scenario are presented, although we have carried out FDI in

many other fault scenarios. Interested readers are encouraged to contact the corresponding

author to obtain more details.

An incipient fault simulated by 0.018(t − tf ) is introduced to an element at tf = 2406

seconds (2406/6 = 401 frame periods). The test data covering 615 frame periods are sampled

at the same rate as the training data, and on-line and real-time FDI is carried out. We

calculate the fault detection index, fD(k) = e′(k)R−1
e e(k), which in the fault-free case,

follows a chi-square distribution with degrees of freedom, 6. Therefore, with a pre-selected

level of significance β = 0.01, the confidence limit for fD(k) is χ2
0.01(6) = 16.812. We scale

fD(k) by 16.812 and plot the scaled value, f̄D(k) = fD(k)/16.812, in Figure 7. Therein, f̄D(k)

has a unit confidence limit represented by the dashed line in the figure.

We further calculate the fault isolation indices: fI,i(k) for i ∈ [1, 6] and scale them by

their threshold 6.6349. The scaled isolation indices: f̄I,i(k) = fI,i/6.6349 are also depicted

in Figure 7. It can be seen from the figure that f̄D(k) is beyond the unit confidence limit

after the occurrence of the fault (there is a delay in the detection, because an incipient

fault evolves with time slowly). Therefore, fault detection has been successfully performed.

Moreover, since f̄I,3(k) is unaffected by the fault (below the unit confidence limit), while

{f̄I,1(k), f̄I,2(k), f̄I,4(k), f̄I,5(k), f̄I,6(k)} are affected by the fault (beyond the unit limit). The

sensitivity of the five fault isolation indices can be characterized by a binary code [1 1 0 1 1 1].

Thus it can be inferred that the third element, which is the first sensor, has a fault.

We define the fault-to-signal ratio as follows to quantify the sensitivity of the proposed

FDI scheme, rf/s =
∑N0

k=kf
‖fy(k)‖/

∑N0

k=kf
‖y∗(k)‖%. In the ratio, kf is the frame period at

which the fault occurs, and N0 is the number of frame periods in the test data. For the FDI
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results displayed in Figure 7, kf = 401, N0 = 615, and rf/s = 3.74%, indicating that the

proposed FDI methodology has high sensitivity in detecting and isolating faults.
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Figure 7: Detection and isolation of a fault in the 1st sensor. The sensitivity of the isolation

indices to the fault is [1 1 0 1 1 1].

7 Conclusion

Data-driven Kalman filters for NUSM systems have been proposed. A numerical example

to illustrate estimation of the process variables from a simulated quadruple tank system

with NUSM data is provided. Moreover, a novel Kalman filter-based FDI methodology,

which gives a unified treatment of faults in actuators, sensors and process components, has

been investigated, including analysis on fault detectability and isolability. The developed

FDI scheme has been applied to an experimental CSTHS system, where different types of

actuator and sensor faults are successfully detected and isolated. The practicality and utility

of the proposed theory have been demonstrated.
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Appendix, Derivation of Eqn. 4

Multiplying the first line of Eqn. 1 by e−At leads to e−Atẋ(t) = e−AtAx(t) + e−At [Bũ(t) + φ(t)],
or equivalently,

d
[

e−Atx(t)
]

dt
= e−At [Bũ(t) + φ(t)] (27)

where e−At is assumed to be non-singular for any t, and d
(

e−Atx(t)
)

/dt = e−Atẋ(t)−e−AtAx(t).

Integrating Eqn. 27 from t = kT to t = kT + T gives e−A(kT+T )x(kT + T ) − e−AkTx(kT ) =
∫ kT+T
kT e−At [Bũ(t) + φ(t)] dt, which can be manipulated into

x(k + 1) = A x(k) +

∫ kT+T

kT
eA(kT+T−t) [Bũ(t) + φ(t)] dt, (28)

where x(k) ≡ x(kT ), x(k + 1) ≡ x(kT + T ), and A ≡ eAT .
With t ∈ [kT, kT + T ], assuming that ũ(t) and φ(t) are piece-wise constant within the interval

[kT + tj−1
i , kT + tji ] for i ∈ [1, p] and j ∈ [1, ni], one can derive

∫ kT+T

kT
e−AtBũ(t)dt = B ũ(k),

∫ kT+T

kT
e−Atφ(t)dt = W φ(k) (29)

where, B = [B1
1 · · · Bn1

1 B1
2 · · · Bn2

2 · · · B1
p · · · B

np
p ] ∈ ℜn×lg, and W = B|

W
j
i
=B

ni
i

∈ ℜn×ng.

In Eqn. 29, B
j
i =

∫ T−tj−1

i

T−tj
i

eAtBdt ∈ ℜn×l except B
np
p =

∫ T−t
np−1

p

0 eAtBdt, where tji = 0

if i = 1 and j = 0; tji = t
ni−1−1
i−1 for i > 1 and j = 0. Using Eqns. 29 in Eqn. 28 gives

x(k + 1) = A x(k) + B ũ(k) + W φ(k), which is the first line of Eqn. 4.
On the other hand, integrating Eqn. 27 with t ∈ [kT, kT + τ ] and 0 ≤ τ ≤ T produces

x(kT + τ) = eAτx(k) +

∫ kT+τ

kT
eA(kT+τ−t) [Bũ(t) + φ(t)] dt (30)

It turns out from the second line of Eqn. 1 that

ỹ(kT + τ) = Cx(kT + τ) + Dũ(kT + τ) (31)

Therefore, the combination of Eqns. 30 and 31 shows

ỹ(kT + τ) = CeAτx(k) + C

∫ kT+τ

kT
eA(kT+τ−t) [Bũ(t) + φ(t)] dt + Dũ(kT + τ) (32)
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For i ∈ [1, p], evaluating Eqn. 32 at τ = ti yields

ỹ(kT + ti) = Cix(k) + C

∫ kT+ti

kT
eA(kT+ti−t) [Bũ(t) + φ(t)] dt + Dũ(kT + ti) (33)

where Ci = eAti .
For i ∈ [1, p], when sampling the input and output variables as shown in Figure 1, one can

obtain

ỹ(kT + ti) = Cix(k) +

[D1
i · · · Di

i]
[

ũ′(kT + t11) · · · ũ
′(kT + tn1

1 ) · · · ũ′(kT + t1i−1) · · · ũ
′(kT + tni−1

i−1 ) ũ′(kT + t1i )
]′

+

[J1
i · · · Ji

i]
[

φ′(kT + t11) · · ·φ
′(kT + tn1

1 ) · · ·φ′(kT + t1i−1) · · ·φ
′(kT + tni−1

i−1 ) φ′(kT + t1i )
]′

,

where, Di
i =

∫ ti−t
ni−1

i−1

0 eAtBdt+D; D
j
i = C[

∫ ti−t
nj−1

j−1

ti−t1
j

eAtBdt|
∫ ti−t1

j

ti−t2
j

eAtBdt| · · · |
∫ t−t

nj−1

j

t−t
nj
j

eAtBdt] ∈

ℜm×lnj and J
j
i = D

j
i |B=In,D=0 ∈ ℜ

m×nnj for j ∈ [1, i− 1].
Stacking ỹ(kT + t1), ỹ(kT + t2), until ỹ(kT + tp) together produces the second line of Eqn. 4:

ỹ(k) = Cx(k) + D ũ(k) + Jφ(k),

where

C =













C1

C2
...

Cp













∈ ℜmp×n , D =

























D1
1 0 · · · · · · 0

D1
2 D2

2 0 · · ·
...

D1
3 D2

3 D3
3 · · ·

...
...

... 0

D1
p D2

p D3
p . . . Dp

p

























∈ ℜmp×lg with D1
1 = D,

and J = D|B=In,D=0 ∈ ℜ
mp×ng.
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