Professor Department of Computing Science University of Alberta Edmonton, Alberta Canada T6G 2E8 
Office: 311 Athabasca Hall Email: szepesva AT cs DOT ualberta DOT ca Phone: (780) 4928581 Fax: (780) 4926393 
[en/hu dict] [RLFA RG] [CMPUT 412] [calendar] [math genealogy] 
Who am I?
Faculty at the Department of Computing Science,
one of the 10 PIs
at AICML (the Alberta Innovates Centre for Machine Learning)
member of Reinforcement Learning and Artificial Intelligence
group.
However, more importantly, I am part of my loving family.
My wife is
Beáta,
our kids are
Dávid,
Réka,
Eszter and
Csongor.
Short bio.

News
 (December 2015) NIPS + Workshops, Montreal!
 (November 2015) Trip to UK, visiting Yee Whye Teh then off to Singapore to the Learning and Games workshop.
 (October 2015) ALT/ DS 2015, in Banff I was coorganizer with Sandra.
 (September 2015) Four papers accepted at NIPS, yay!
 (August 2015) Tutorial on reinforcement learning at the Machine Learning Summer School in Kyoto, Japan. The slides:
 (July 2015) Keynote at EWRL on "Lazy Posterior Sampling for Parametric Nonlinear Control". slides
 (July 2015) Invited talk on "Online learning and prediction on a budget" at the ICML 2015 Workshop on ResourceEfficient Machine Learning. slides
 (July 2015) Talk on our IJCAI'15 paper, "Fast CrossValidation for Incremental Learning" at Deepmind. slides
 (JuneJuly 2015) Lectures at the Online learning summer school, Copenhagen. Topics included Linear Bandits, Linear UCB, Generalized Linear Bandits, Combinatorial Bandits, Partial Monitoring, Thompson sampling for MDPs.
 (June 2015) Invited talk (slides) on "How to Explore to Maximize Future Return" at AI 2015 Crazy timing (the conference dates totally coincided with the NIPS deadline)! I had no choice but to go to see Yaoliang getting his award as the author of the best PhD thesis in AI in 2015 in Canada! Congrats Yaoliang, well done!!
 (March 2015) 3part tutorial on "Online learning" at the Indian Institute of Technology (IIT) of Madras at the Workshop on Advances in Reinforcement Learning.
 (March 2015) Talk on "Exploiting Symmetries to Construct Efficient MCMC Algorithms" at Waterloo. slides
 (January 2015) Distinguished lecture at UBC on "Learning to Make Better Decisions: Challenges for the 21st Century". slides
Info
 Prospective grad students who are interested in joining the Statistical Machine Learning degree specialization program, which is a joint program between our department and the MathStat department should look here. Why should you apply?
 Here is some advice for present and future grad students.
 Responding to an "emergency situation", back in 2008 I have spent a few hours by searching on the IEEE website to collect recent references on applications of RL. Here are the results which are now linked to the page on Successes of RL. See also Satinder's similarly titled page here.