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Abstract

It is shown that local, extended objects of a metrical topological space shape the
receptive fields of competitive neurons to local filters. Self-organized topology
learning is then solved with the help of Hebbian learning together with extended
objects that provide unique information about neighborhood relations. A t{opo-
graphical map is deduced and is used to speed up [urther adaptation in a changing
environment with the help of Kohonen type learning that teaches the neighbors of
winning neurons as well.

Introduction

Self-erganized learning is a mest attractive feature of certain artificial neural netwerk
paradigms (Gressberg, 1976, Kehenen, 1981, Carpenter and Gressberg, 1987, Foldiak
1990). It is censidered as a means ef selving preblems in an unknewn envirenment. The
architecture of the neural netwerk, hewever, is in general ’'inherited’; in ether werds is
prewired and may severely limit the adaptatien pessibilities of the net. An example is
the Kohonen-type topographical map that has a built-in neighborhood relation. Various
altempts have been made {o resolve this problem such as the sell-building model of
Iritzke (I'ritzke, 1991) and the neural gas network of Martinetz aud Schulten (Martinetz
and Schulten, 1991). The closest to the present work is the neural gas network. It
is based on the idea thal topology can be learnt on the basis of joint similarity. It
determines adjacent neurens based en the distance measured in the metric of the input
vecter space. Censider, hewever, the example of a maze embedded in a twe-dimensienal
Euclidean space. The twe sides of ene of the walls in the maze have very clese input
vecters in the metric of the Luclidean space theugh they may be very far frem each
ether in the metric space breught abeut by the tepelegy of the maze. The questien then
arises if and hew and under what cenditiens a given netwerk is capable of determining
the tepelegy the external werld.

The medel we present here relies en the extended nature of ebjects in the external
werld. This methed can take advantage of the same idea of joint similarity and prevides a
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simple route for exploring the neighborhood relations as the objects themselves bring the
information. The receptive [ields ol the neurons are local [ilters and the neural network
may be considered as a dimensional reducing system that provides position information
and neglects object details.

In order to take advantage ol neighboring relations and the possibility of Kohonen-
type neighbor training a distance [unction may be established with the help ol Ilebbian
learning: extended objects may overlap with receptive fields of dillerent neurons and
may excite more than one neuron at the same time. These neurons then assume activ-
ities different from zero, and Hebbian learning may he used to set up connectivity that
matches the topology. I'he strength of the connection may be related to the distance
in further processing. 'I'he greater the strength, the smaller the distance. In this way a
topographical map s established and Kohonen-type training becomes a feasible means
of speeding up further adaptation in a changing environment.

Dimensionality reduction with spatial filters

Iirst, we deline local, extended objects. Lel us assume thal the external world is a
meltrical topological space equipped with a measure and is embedded i a bounded region
ol Fuclidean space. Lel us then consider a mapping [rom the subsets ol the bounded
region of the Luclidean space into a finite dimensional vector space. This mapping could,
[or example, be delined by choosing two vectors of the subsets randomly. Another type
ol mapping may, [or example, spalially digitize the external world, and [orm a digital
image. Hereinafter we shall use this mapping and call the elements of the digitized image
as pixels. A vector of the vector space will be considered a local, extended object if (i)
there exists a connected open set of the metrical topological space that after mapping is
identical with the said vector, (ii) if the measure of that open set is not zevo, and (iii) if
the open set’s convex hull taken in the vector space is in the topological space.

Let us further assume that our inputs are local, extended objects and our task is to
provide the approximate position of the corresponding real object with no reference to its
form. In order to be more concrete, let us take the example of a three dimensional object
mapped onto two two-dimensional retinas, i.e. to a many dimensional vector space. The
vector, that describes the digitized image on the retinas is the extended object. The task
is to determine the position ol the original. real object, with no reference to its [orm and
with no a priori knowledge ol the dimensionality, nor even of the topology ol the external
world. This problem will not be considered here, however these tools are general enough
to solve il. In the [ollowing we restrict our investigations to the case ol a single retina.

We may say, [or example, that an object 1s ’in the middle” or "in the upper lelt corner’
or that it is "down and right’. This task may be considered as a dimensionality reduction
problem since if the image is given in the form of n x n pixels, having continuous grey-
scale intensities, then one maps an n x n input matrix having elements on the [0, 1] real
interval into the world of m expressions that denote the possible different positions.

Let us assume that the spatial filters that correspond to our position expressions
already exist and let us list the expressions and organize the filters in a way. that the "
filter corresponds to the i** expression. For example, in the case of a two-dimensional
image the expression ‘middle” would correspond to a spatial filter that transforms the
image by causing no change in pixel intensities around the middle of the image but the
farther the pixels are from the center the more the filter decreases the pixel intensities. As
a demonstration Fig. 1 shows spatial filters of a nine-expression set. These are Gaussian
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filters but other filters could serve just as well. The filters are digitized by replacing the
center value of every pixel by the closest digitized grey scale value. Let G&) denote the
o digitized Gaussian spalial filter, and let S denole an input (image) vector. Let g‘,()i],
$59(1 < p. g < n) denote the values in pixels (p, q) of the digitized i Gauss filter and
the inpul veclor, respectively.
Now, the searched position estimation may be given iu the [ollowing [ashion: I[Mirst,
let the mpul vector pass all of the digitized Gauss [ilters. Lel us denole the output of
the +* filter by (; — examples will be given later — and denote the mapping by d:

G, =d(GW.S),(i=1,2, ..,m) (L)

The mapping d is to be engineered in such a way that it can be considered as a 'distance’
function R*** — RT U {0} providing distance-like quantities between the pattern
inputting the network and the Gaussian filters. With such a d function one might
choose the smallest (/; value. If that has index j. then we say: the position of the object

‘!‘L

is the j* expression. There are various possibilities for function d; here we list three of

them:

o Conventional [iltering is delined by multiplying the input values by the [ilter values
and then integrating over the inpul space. In order to [ullil our requirements [or
the ’distance’ [unction d, let us define it in the [ollowing [ashion:

G(X,Y) =1 = (1/n) X @iy (2)

i,5=1

[rom here onwards it is assumed that 0 < z;;,y,; < 1. This "distance’ [unction has
the form I — (1/n*)X - Y where X - Y is the inner product or spherical distance.
Since this ‘distance’ delinition is normalized, we might deline an ‘input-to-filter-
similarity-mcasurc’, er mcasurc of similarity, S in shert, as 5 = 1 — d, where d 1s
the ‘distance’. The smaller the distance, the larger the similarity between input
and filter vecters.

e One might try to use the usual Euclidean distance in R"*™, that is

X Y) = 1/n2)\l S (24 — yiy)? (3)

4,3=1

o Another form that is not a metric but may he used here is

i

(/3(X~Y) = (l/nb)d Z T”( Jz/) [1)

4,3=1

Forming spatial filters by competitive learning

Special competitive networks may form equiprobabilistic digitization of the input space
according to the density distribution of input vectors (Desieno 1988). Networks of pure
competitivity are knowi {o solve the problem ol equiprobabilistic digitization [or uniform
distributions (Kohonen 1984).
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Let us define a competitive neural network of m neurons. The external world provides
imputs to inpul nodes. LEvery inpul node is connected to every neuron ol the network
(see I'ig.2). Lvery neuron stores a vector of the inpul space. The stored vector of the
i neuron is denoted by w;. Training modifies the stored vectors. The procedure of
modification is as [ollows:

e An input is presented te the netwerk in accerdance with the density distributien.
Input nedcs ferward inputs te the ncurens.

e Neurons process their inputs and develop activities in accordance with the equation
D; =d(x,wi)=1-05; (3)

where x is the forwarded input vector, d is a ’distance’ function and S; is the
mcasure of similarity.

o Competition starts. The winner of the competition is the neuron whose stored
vector is the ‘closest’ to the input vector, i.e. the neuron having the smallest
‘distance’ (er largest similarity).

e The stored vector ol the winniug neuron ¢ is then modified with the help ol the
update rule:

Awl) = a(x — wi) (6)

where « is the so called learning rate; 0 < o < 1. Ilere we apply a constant
learning rate during the whole training. It was [ound thal the time dependent
learning rate did nol improve training results. Time-independent learning rate has
the advantage that it keeps adaptlivily.

In the numcrical simulatiens, we presented twe-dimensienal ebjocts of a twe-dimensienal
spacc te the nctwerk. The input space and enc ef the input vecters that was presented arc
llustrated in Fig.3. Input vectors were derived by computing the overlap of the local,
extended, randomly positioned objects and the pixels of digitization. Two ditferent
objects were used in these runs, an X shaped object (shown in Fig.3) and an 0 like
object (not shown). In the first set of runs a single object was presented to the network
at random positions. In other runs two or three objects were presented simultaneously
to the network at random positions.

The training precedure resulted in spatial filters fer 'distance’ functiens d,,d,, and
ds defined in the previeus sectien. We tried single ebjects for 'distance’ functiens d, and
ds. Fer spherical distance d; up te three ebjects were presented simultaneeusly.

First, we tried the Luclidean distance functien d,. Judging frem eur experience
the netwerk was able te learn enly if the stered vecters were set clese te zere prier te
training. The noisc resistance of the network cquipped with the Fuclidean distance was
rather small. The heuristic reasoning for this finding is given in the Appendix.

The term A
> (i)
(kel

of Eq. (12) in the Appendix the indices correspond to the digitization of the two
dimensional space and [ denotes the set of zero elements of input vector x of a given

extended object — is responsible for the poor performance of the Euclidean distance
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function. This term manifests itself in large distance values for inputs with a fair amount
ol noise. In this way one single neuron that has small w,[;,) components can always win
the competition. Training — as the analysis in the Appendix shows — teuds to lead to
this attractor.

The simplest way ol eliminating that term is to modily the Fuclidean distauce [unc-
tion Lo ds of (4). "BWistance’ [unclion ds has a strong resemblance Lo the spherical distance
[unctions d;. Both of these [unctions solve the problem. There are other possible so-
lutions to this problem, such as trying to decrease the mean value of the initial noise,
or the learning rate, or start the learning rate from 1 and changing it m an appropri-
ate fashion (Desieno, 1988). Analysis shows, however, that the spherical distance works
hetter under more demanding conditions.

Single-object training results are shown for the spherical distance function in Fig.1.
The results we present from now on were produced with this distance function.

One of the results of the competition is that if one increases the size of the local,
extended objects one or more neurons may lose their receptive fields; in other words may
have near zero stored vectors. Neurons lose their receptive fields by first approaching a
corner of the two dimensional region. The number of neurons having nen-zero receptive
fields depends on the ratio of the bounded Ifuclidean region and the average area ol the
local, extended objects. The hounded Euclidean region is shared by the neurons: it is
divided into nearly nou-overlapping regionus that correspond to the average object size.

In another set ol training runs when two or three (more than one) randomly positioned
objects were simultaneously presented to the network the results were very similar: [ilters
were formed just like before, however, the rest of the filter vectors of the neurons were
noisy. In other words the filters (the receptive fields) were surrounded by a low noise
homogeneous background showing that winning neurons learnt of the presence of other
objects as well and represented those as a random background. This is an attractive
property of the algorithm; our strong competition forces the neurons to learn the most
important correlations that being the locality of single objects and thus the neurons can
neglect the correlations between two or more randomly positioned objects. To improve
the winning chances neurons develop a random like background if more than one object
is inputted to the network simultaneously. The background was considerably larger for
the three-object case than for the two-object case. There was no noise for the single-
object case. The two- and three-object filters are shown in Fig.5. In the following only
the single-object case will be studied.

It is worth neting that in the general case seme neurons may be sentenced te have
very small — but nonzero — receptive [ields. As the receplive [ield of {hese neurens
never becomes exactly zere ene may hepe that these neurens are enly ’sleeping’ or 'net
needed at present’ or ’of small role’ but net dead neurons. As it is shewn in the paper
these 'small rele ncurens’ may recover and assume an cqual rele if adaptivity is kept and
the external world changes.

Topology by Hebbian learning

It is a relatively easy task to build up the internal representation of the topology of the
external world when the spatial filters are given. Let us introduce connections between
neurons. These connections can represent the topology of the given metrical topogical
space in the following fashion: The closer the stored vectors of two neurons are in the
metric of the topological space, the stronger should be the connection between the two
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neurons and vice versa: if the connecting weight between two neurons is larger than zero
then the vectors ol the two neurons should be close in the metric of the topological space.

To form these connections one needs to note that a local, extended object may overlap
with two spatial [ilters and may excite {wo neurons simultaneously. This means that
the closer two spatial [ilters are, the more olten the neurons representing them [ire
simultaneously. In our notation il means that their D; values are small. One may use
this lact to develop connections between the neurons. Let us sel the strength of the
connections to zero at the beginning and use the following Hebhian update rule in a
parallel fashion during the whole training procedure with training rule (6):

Agi; = BS54 (7)

(I N) . 5 o . . o 5 .
where '“[( Y= 1 = D™ is the measure of similarity for the ¢ (ilter for a given input, g;;

denotes the strength of the connections, 3 is the learning rate, and N denotes that both
the S; and the D; values are normalized to the [0, 1] interval. Counection strength ¢;;
is constrained to interval [0.1]. The best resulls were achieved when only the winuing

neuron could update its connections:
, . S(N) (N .
Agij = 8 (5 +3,) (S 51 — g3)) (8)

where y; is the output of the i:th neuron after competition: the output is 1 for the
winning neuron and 0 for the others. In this way y; + y; is not zero if and only if
either the ¢th or the jth neuron was winning. Connection strengths are shown in the
left hand side of Fig.6. Connection strengths are depicted by the thicknesses of the
connecting lines between neurons. The position and the size of the circles represent
the position and the size of the spatial filters, respectively. A non-connected topology
was also produced by showing local, extended objects along three horizontal strips only
(see the right hand side of I'ig.6). I'igure 6 shows well developed connections between
neighboring filters in both the one dimensional and the two dimensional topologies. It
is worth noting that connections between neurons that are farther. i.e. connections that
would represent medium-range topology propertics, did not develop in this model. In
the present training examples filters are formed according to the object size and thus
the object may cxcite only neighboring neurons. It is recasonable to cxpect, however,
that if they have a distribution of object or feature sizes, filters will develop according
to the average size. The larger-than-average object would develop connections hetween
non-neighboring neurons as well if topology allows it.

The neural gas model of Martinetz & Schulten (1991) could not build up the correct
topology for this case as it is not based on the neighborhood relations of topological space
provided by our local, extended objects, but is based on a closeness relation in the metric
of Euclidean space into which the topology is embedded. As an example assume, that
the input is such that the closest neuron has the top-left receptive field. Second closest
neuron is then either the middle-left or the {op-middle neuron or both according to the
exact position ol the object. That is the neural gas model would develop connections
between the top-left and the middle-left neurons too and the connection structure would
become two a dimensional grid.

The neural gas algorithm in its present [orm is capable of representing the topology
of only those worlds in which the closeness relation helonging to the topology and the
closeness relation belonging to the FKuclidean distance are identical. Slight modifications
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— modification of inputs and modification of distance function — can make the neural
gas model work [or all cases Loo.

It has been shown [or the case of single-object training that a lateral weight g;; 1s
non-zero il and only i[ the presented local object series has an infinite subseries in a way
thal the objects ol this subseries overlap with the outer inverse image ol both the w; and
the w; vectors (Szepesvari, 1992). Since the presented objects are local objects one may
conclude thal the sets represented by the w; and w; vectors are locally connected, i.e. the
non-zero lateral weights represent the topology. 'I'he necessary and sufficient condition of
the proof is that both the digitization of the topological space and the distance function
of the neural network should satisty a separability condition (Szepesvéri, 1992). T'he
separahility condition generalizes the view (naive in mathematical terms) that filter
response should be zero if and only if the filter does not overlap with the input. This is
the very point where the Euclidean distance fails.

Figure 7 shows the connection strengths as a function of “distance’ d3 of the spatial
filters.

Topographical map and Kohonen training

The Ilebbian connections allow us to utilize the Kohonen type neighbor training, i.e. to
introduce a cooperative learning scheme and to speed up the adaptivity of the network
i a changing environment. The closeness or connection strengths of the neurons in the
Kohonen map are predelined. Ilere we develop connection strengths in a dynamic fashion
and that leads to a new problem when introducing Kohonen type neighbor training:
Cooperative training may win over filter forming competition. T'he original Kohonen
neighbor training may he written as

aHig)(x—wi), if i #k;

Awld) = : &
v a(x —wih), if i = k.

(9)

where index & denotes the winning neuron. and the connection strengths ¢; may be
considered as predefined time dependent functions. Their initial values determine an
inherited closeness between neurons. The said closeness is a slowly decreasing function
of time whereas function H is a strictly decreasing monotonic function of distance; in
ether werds, it 1s a that is a strictly increasing menetenic functien ef cennectien strength
¢ir with: H(0) =0 and H(l) = 1.

If ene tries te establish an adaptive ceeperative neighber training then first the
inherited rule of cleseness sheuld be replaced by rule (7) in erder et determine the
cleseness relatiens. Hewever, this simple replacement and the usual function H lead
to the loss of competition between necurons: the receptive fields of different neurons
grossly overlap and become identical asymptotically. This is duce to the fact that if the
distance of the weights of two ncurons is small then they cfficiently tecach cach other
and the connection strength between them further incrcases as they are often active
simultancously.

A solution to this problem is to choose another function . Such a function should
have the following properties: (i) it should be positive, (ii) start from zero, (iii) increase
towards a maximuun, and (iv) decrease for larger arguments down to zero. Condition
(iv) ensures that neurons cannot share learning if they are too close to each other. The
other conditions ensure that neurons far from each other cannot learn the same input.
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A function of the following form H () = ((1—x)?(e " —e ) satisfies these conditions
it its parameters are appropriately chosen and competition persists. Parameters for our
case were chosen to be ¢ = 100,v = 10. In these runs, just as in the other experiments
to be discussed laler, lateral connection development and the neighbor training through
these connections were applied [rom the very beginning, i.e. the development ol lateral
connections and the development of [eed-lorward connections were both on [rom the very
beginning,.

It 1s quite surprising that there is a large [amily of {raining rules that does not utilize
the arbitrary function H and keeps the cooperative propertics: The idea 1s that onc may
try to usc the activity of the ncurons in the lcarning rule. The point to remember here
1s that in the fully developed neural network we hope that ‘far away ncurons’ will have
disjunct reeeptive ficlds and a given input will give risc to no activity of most of the
ncurons. The lcarning rulc may now be expressed as:

Al _ [ (U= qn)  (SF (e —wi®), it i # &
Awl — \ - (10)

a(x — wi), ifi==%.

where & denotes the index of the winning neuron, ¢ and b are fixed positive powers. In
this learning rule it 1s the dependence on the activities that results in no simultaneous
learning for remote neurons. Factor (1 — ¢;) decreases cooperativity for neurons coming
too close o each other. In this way dynamic balance is eusured [or cooperalive learning.
Based on our numerical experiments powers a and & should both be larger than 2 {o keep
competitivity. Integers between 2 and 4 were tried and all ol them succeeded. In the
limit of @ and b go to infiuity the neighbor training ol (10) disappears and oue is le[t with
a simple competitive network. It is then expected that the training rule (10) is stable
for @ and b values both larger than two. T'his family of learning rules seems appropriate
as a means of setting up adaptive cooperative Kohonen type neighbor training. T'he
advantages of such training are dealt with below.

It may be expected that cooperative neighbor training helps adaptivity. Since in our
model the distinct learning rules may be compared in a relativelv unambigous fashion
we tried separate runs so that we could compare the adaptivity of a competitive network
and the network that utilized neighbor training (10). by applving a sudden change in
the average object size. Networks respond to the change by changing filter sizes and
creating or destroving filters. The time evolutions of filter sizes are shown in Fig.8. In
the numerical experiment object size was decreased to one half of its original size. The
competitive network (left side) responded with a sudden decrease in the size of active
[ilters and developed a new [ilter much later. The network that utilized neighbor training
did not allow the activity of any ol ils neurons lo decrease o very low levels and both
the decrease in the size ol the active [ilters and the increase in the small activity [ilters
took place al a high rate. This was [ollowed by a slow decrease ol the aclivily ol one
neuron, the only one that could not play a role in the new situation and was sentenced to
remain silent. The comparison clearly shows that adaptivity increases with cooperative
learning.

Conclusions

Competitive neural networks having local, extended objects as inputs can be used to
form spatial filters, are able to discover the topology of the external world, and offer a
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means of designing neighbor training, which significantly improves adaptivity. The use
ol local, extended objects helps in reducing the necessary a priori inlormation aboul the
external world built into sell-organizing neural networks.

Acknowledgement is made 1o the relerees [or their constructive criticism.
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Appendix: Problems with the robustness of the Euclidean dis-
tance function

The activity of the ** neuron may be expressed as:

l 7 e 4
D; = —>J > (7 — wy})? (1)

7N k=1

where the indices correspond to the digitization of the two-dimensional space. Let us
denote the set of zero elements of the input vector x of a given extended object by I.
The number of elements of set I are denoted by | I |. The sum of Eq. (11) may be
divided into two parts:

(nzD,;JZ _ Z ('Ltr,gi‘))z + Z (21 _wgcil)Jz (12)

(ker (kD@7

Let us sct the components of the initial stored vectors around ) with a small noisc
content. Without loss of gencrality one may assume that the first ncuron wins for the
first presented input vector x. Let us assume as well that | I | is typically large, i.e. the
extended objects are small. Now, we may approximate the average updating as:

w = (1 - )i (g, and

T =), ifi £ 1, (13)

where the bar denotes averaging over the components of the stored vector of a neuron.
Let us examine the case that a neuron has won and a new randomly positioned object is
shown to the neural network. We are interested in the probability that the same neuron
shall win. To this end let us give upper and lower estimates for the activities ot the
previously winning and the other neurons, respectively, in the new presentation:

(n2D1)? < (1 — )2ty | 1] +(n*— | I ])
(n1:)? > oy | 1] (14)
bearing in mind that the weights always fall into the [0,1] interval. Tf
Dy <D0 #1 (15)

then in the next training step it is the first neuron that wins again. This inequality,
however, is easily fulfilled. The inequalities (11), and (15) lead to

1 /n? > 104 (1= (1 = 0))idy) (16)

’|‘h(‘, Iar CT W) ﬁ‘T]d (8% T.h(‘, Ca,Si(‘,l‘ IT iS to hllﬁl thiS C()ﬂdiﬁOTI. IJCt 11S assumec t.ha,t th(‘, thC
g () ;
ﬁl‘St ncuron won t ﬁTﬂC‘S iT] a TOWw. H’ iﬂ(‘.(l]ﬁ‘litV
{ A

| T /n* >1/(04+(1=(1 - o) wy,) (17)

is fulfilled, then it wins again. Incquality (17) shews that the first ncuren’s chance of
winning keeps grewing. Taking the limit ef 1+ — oc we have

|I|/n2>1/(1+@?0)) (18)
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and this expression is independent of «. This gives rise to an upper limit of @e). Above
that limit, i.e. [or small objects, the Fuclidean distance [unction caunot solve the problem
or, al least, one may say that the probability of having only one winning neuron is larger
than zero: accordiug o our experience it is close to 1. Ilaving more than one neuron,
however, does not mean thal more than one spatial [ilter will be [ormed. The question
1s how to [orm separate [ilters. As it 1s shown in the paper the ‘spherical distance’ is an
appropriate solution of this problem.
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Figure captions

o Figure |. Digitized spatial Geussian filters

Gaussian [ilters of a two dimensional box corresponding lo expressions: "upper
le[t’, 'upper middle’ upper right’, etc. The [igure was drawn by generating pixels
randomly with probabilities that correspoud to the gray scale values.

o Figure 2. Archileclure of the artificial neural network

The ANN has a set of inputl nodes. Inputs connected to the network are denoted
by x;,i = 1,2, ..., n. Every input node is counected to every neuron of the network.
Every ncuren stores a vecter of the input space: ncuren j stores ('wgJ ), w«g"'), ool
Ncurens develop another sct of connections, the (¢x) topology councctions, an
mternal represeutation of the topology of the external world.

o Figure 3. Typical input
The box on the left hand side shows an object at a given position that was trans-
mitted to the input nodes. The middle box shows the outputs of the input nodes
developed. Tnput nodes developed activities according to their overlaps with the
inputted object. The upper and the lower boxes on the right hand side show the
outputs DE‘N) of the ncurons and the stored vector of the winning ncuron, respee-
tively.

o Figurc 1. Training rcsults on sclf-erganizcd filter fermation during treining The
numbers show the training steps. Filters arc formed during the first 5000 steps. At
later steps the configuration undergoes minor modifications in accordance with the
random object generation, but stays stable. The figure was drawn by generating
pixels randomly with probabilities that correspond to the gray scale values.

o Figure 6. Learnt ene and two dimensional topolegies

(Connection thicknesses show the strengths of topology connections gg;. In the left
hand side figure objects were generated everywhere in the two dimensional box.
No line means approximately zero strength connections. In the right hand side
tigure objects were generated along three horizontal strips in the two dimensional
box with arbitrary ordinates. No line means zero strength connections.

o Figure 7. Menotenicity ef tepelegical connectien strengths

Strength of topology connection gr; as a function of overlap of filters. The overlap
of the k' and I'* filters is defined as 37 ; w,f-f) wfj).

o Figure 8. Adaptivity of ANN's

After a sudden change in the external world or, here, the average object size,
networks try to adapt. Adaptation means a change of filter size and creation or
death of filters. The graph on the left hand side shows the evolution of filter sizes
for the competitive network. The graph on the right hand side shows the evolution
ol [ilter sizes [or a competitive network that developed topology connections and
Kohonen type neighbor training. The graphs depict points [rom 100,000 learning
steps prior to and 100,000 learning steps alter the sudden change. Step number
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zero is the time of the sudden change. The region of the first 20,000 steps after the
change 1s enlarged aud enclosed with dashed lines. Size is delined as Ei’j(-wfflf

o Figure 5. Training vesults of the three-ebject case

Receptive filters are formed in the case of training with by showing three randomly
positioned objects simultaneously. The noisy background is the result of the pres-
ence ol more than one object at the same time. The noise increases the avarage
[ilter size resulting in the strong decrease ol the receptive lield of one neuron in the
three object case.
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Figure 1: Bigitized spatial Gaussian [ilters
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Figure 2: Architecture of the artificial neural network
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Figure 3: A captured screen
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Figure 4: Training results on self-organized filter formation during training
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Figure 5: Training results of the twe- and three-object cases
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Figure 6: Learnt one and two dimensional topologies
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Figure 7: Monotonity of topological connection strengths
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Figure 8: Adaptivity of the network



