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Abstract 
It is shown that local. extended objects of a metrical topological space shape the 
receptive fields of competitive neurons to local filters. Self-orl!,anized topolol!,Y 

learninl!, is then solved with the help of Hebbian learninl!, tOl!,ether with extended 

objecttl that provide unique illfonnaLion about neighborhood relaLiolltl. A topo­

graphic,al Illap if) dcduc,(xl and it; used to Dpeed up further adaptation in a changing 

environment with the help of Kohonen type learning that teaches the neighbors of 

\vlnning neurons as well. 

Introduction 

Self-organized learning is a most attractive feature of certain artificial neural network 
paradigms (Grossberg, 1976, Kohonen, 198'1, Carpenter and Grossberg, 1987, Fiildiiik 
1990). It is considered as a means of solving problems in an unknown environment. The 
architecture of the neural network, however, is in general 'inherited', in other words is 
prewired and may severely limit the adaptation possibilities of the net. An example is 
the Kohonen-lype lopographical lIlap that has a builL-in neighborhood relation. Various 
alLelIlpLs have been made 10 resolve this problem such as the self-building model of 
J:irit�ke (J:irit�ke, 19(1) and lhe neural gas network of Martinelz and Schulten (:\1arlinelz 
and SclmlLen, 1(91). The closest 10 lhe presenl work is lhe neural gas nelwork. Ie 
is based on lhe idea thaI lopology can be learnl on the basis of joint similarity. Ie 
determines adjacent neurons based on the distance measured in the metric of the input 
vector space. Consider, however, the example of a maze embedded in a two-dimensional 
Euclidean space. The two sides of one of the walls in the maze have very close input 
vectors in the metric of the Euclidean space though they may be very far from each 
other in the metric space brought about by the topology of the maze. The question then 
arises if and how and under what conditions a given network is capable of determining 
the topology the external world. 

The model we present here relies on the extended nature of objects in the external 
world. This method can take advantage of the same idea of joint similarity and provides a 
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simple route for exploring the neighborhood relations as the objects themselves bring the 
information. The recepti ve fields of lhe neurons are local fillers and lhe neural neLwork 
may be considered as a dimensional reducing sysLem thaI provides posiLion infoIlllation 
and neglects object del ails. 

In order 10 take ad vanlage of neighboring relalions and lhe possibility of Kohonen­
type neighbor lraining a dislance function may be established wiLh lhe help of IIebbian 
leaming: exlended objects may overlap wilh receptive fields of diJrerent neurons and 
may excite more t.han one ne111'0n at. t.he same time. These ne11rons then aSS11me activ­
ities different. from 7,ero, and Hebbian learning may be 11sed t.o set 11p connectivity t.hat 
mat.ches t.he topology. The st.rengt.h of the  connedion may be relat.ed t.o t.he dist.ance 
in f11rther processing. The greater t.he strength , t.he smaller t.he distance. In t.his way a 
t.opographi cal map is est.ablished and I(ohonen-t.ype t.raining becomes a feasi ble means 
of speeding up further adaptation in a changing environment. 

Dimensionality reduction with spatial filters 

firs\' we define locaL exlended objects. LeI us assume thaI the extemal world is a 
metrical Lopological space equipped wilh a measure and is embedded in a bounded region 
of Euclidean space. Let us then consider a mapping from Lhe subsels of Lhe bounded 
region of the Euclidean space into a finite dimensional vector space. This mapping could, 
for example, be defined by choosing two vectors of the subseLs randomly. Another Lype 
of mapping may, for example, spalially digitize Lhe exLemal world, and form a digital 
image. Hereinafter we shal l,]se t.his mapping and cal l t.he element.s of the  digit.i7-ed image 
a" pixels .  A vector of t.he vector space wi l l  be considered a local extended objed if Ii) 
t.here exi sts a conneded open set of t.he met.rical topologica l space t.hat. after mapping i s  
identical wit h  t.he said vect.or, Iii) i f  t he  meaS1l1'e of t.hat. open set is  not. 7-e1'O, and (iii) if 
t.he open set.'s convex h1111 t.aken in t.he vector space is  in the topological space. 

Let us further assume that our inputs are locaL extended objects and our task is to 
provide the approximate position of the corresponding real object with no reference to its 
form. In order to be more concrete, let us take the example of a three dimensional object 
mapped onto two two-dimensional retinas, i.e. to a many dimensional vector space. The 
vector, that describes the digitized image on the retinas is the extended object. The task 
is 10 deteIllline the posiLion of lhe originaL real object, with no reference Lo ils form and 
with no a priori knowledge of the dimensionalily, nor even of the topology of lhe exlernal 
world. This problem wili noL be considered here, however lhese lools are general enough 
to solve it. In lhe following we restrict our invesligalions to the case of a single retina. 

Vie may say, for example, Lhat an object is 'in lhe middle' or 'in the upper lefL corner' 
or that it is 'down and right'. This task may be considered as a dimensionality reduction 
problem since if the image is given in the form of n X n pixels, having continuous grey­
scale intensities, then one maps an n X n input matrix having elements on the [0,1] real 
interval into the world of m expressions that denote the possible different positions. 

Let us assume that the spatial filters that correspond to our position expressions 
already exist and let us list the expressions and organize the filters in a way, that the it' 
filter corresponds to the ith expression. For example, in the case of a two-dimensional 
image the expression 'middle' would correspond to a spatial filter that transforms the 
image by causing no change in pixel intensities around the middle of the image but the 
farther the pixels are from the center the more the filter decreases the pixel intensities. As 
a demonstration Fig. 1 shows spatial filters of a nine-expression set. These are Gaussian 
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filters but other filters could serve just a,s well. The filters are digitized by replacing the 
center value of every pixel by the closest digitized grey scale value. LeL GCi) denote the 
i'h digitized GauSbian spatial filler, and leL S denote an inpuL (image) vecLor. Let q}�, 
,spq(l S p, q S n) denote the values in pixels (p, q) of the digitized ith Gauss filLer and 
the input vector, respeclively. 

Now, the searched position estimation may be given in the following fashion: first, 
leL the input veclor paSb all of the digitized GauSb filLers. Let us denote the ouLput of 
thei'h iilter by Gi - examples wi l l  be given later - and denote the mapping by d: 

G' - d(Gli) S) " - 1 2 ) T'l - , I I (1 - I � ••• , In (1) 

The mapping Ii is to be engineered in SIlch a way that it can be considered as a 'distance' 
function R"xn --+ R+ U {O} providing distance-like quantities between the pattern 
inputting the network and the Caussian filters. YVith such a d function one might 
choose the smallest Gi value. If that has index j, then we say: the position of the object 
is the j'" expression. There are various possibilities for function d; here we list three of 
them: 

• Conventional fillering is defined by muiLiplying the input values by the filler values 
and then integrating over the input space. In order to fulfil our requirements for 
the 'distance' function d, let us define it in the following fashion: 

n 

d, (X, Y) = 1 - (lin') L XijYij (2) 
,;,j=1 

from here onwards it is assumed that 0 S "'ii, Yij S 1. This 'distance' function has 
the form 1 - (1/n')X . Y where X· Y is the inner product or spherical distance. 
Since this 'distance' definition is normalized, we might define an 'input-to-filler­
similarity- measure', or measure of similarity, S in short, as S = 1 - d, where d is 
the 'distance'. The smaller the distance, the larger the similarity between input 
and filter vectors. 

• One might try to use the usual Euclidean distance in Rnxn, that is 

n 

d,(X, Y) = (1/n2) L (Xij - Yi:il' i,j=1 

• Another form t hat is not a metric b1lt may be 1lsed here is  

n 
rl3 (X, Y) = (1In2) L .fij erij - Yij)' i,j=l 

Forming spatial filters by competitive learning 

(3) 

(1 ) 

Special competitive networks may form equiprobabilistic digitization of the input space 
according to the density distribution of input vectors (Desieno 1988). Networks of pure 
compeLiLivity are known to solve the problem of equiprobabilistic digitization for uniform 
distributions (Kohonen 1984). 



Let '"S define a competitive neural network of m neurons. The external world provides 
inpub 10 inpuL nodes. Every input node is connected Lo every neuron o[ lhe neLwork 
(see Pig.2). Every neuron sLores a vector o[ Lhe inpuL space. The sLored vedor o[ Lhe 
i'h neuron is denoLed by Wi. Training modifies Lhe sLored vectors. The procedure o[ 
modification is ali follows: 

• An input is presented to the network in accordance with the density distribution. 
Input nodes forward inputs to the neurons. 

• Neurons process their inputs and develop activities in accordance with the equation 

Di = d(x, Wi) = 1 - S; (.J) 
where x i s  the forwarded inpnt. vect.or, d i s  a 'distance' fnndion and Si 1S t.he 
mcaSllfC of similarity. 

• CompeLiLion slaIls. The winner of Lhe compelilion is Lhe neuron whose sLored 
vedor is the 'closest' 10 lhe inpul vector, i.e. lhe neuron having lhe smallesL 
'distance' (or largest similarity). 

• The sLored veclor o[ lhe wlIliling neuron i is lhen modified wilh Lhe help of Lhe 
up daLe rule: 

(Ei) 
where n is lhe so called learning rale; 0 < n S 1. Here we apply a conslanl 
learning raLe during lhe whole lraining. It was found Lhal the Lime dependenL 
learning rale did noL improve lraining resuILs. Time-independenL learning raLe has 
lhe advanLage thaI it keeps adapLivily. 

In the numerical simulations, we presented two-dimensional objects of a two-dimensional 
space to the network. The input space and one of the input vectors that was presented arc 
illustrated in Fig.:3. Input vectors were derived by computing the overlap of the local, 
extended, randomly positioned objects and the pixels of digitization. Two different 
objects were used in these runs, an X shaped object (shown in Fig.3) and an a like 
object (not shown). In the first set of runs a single object was presented to the network 
at random positions. In other runs two or three objects were presented simultaneously 
to the network at random positions. 

The training procedure resulted in spatial filters for 'distance' functions d" d" and 
do defined in the previous section. We tried single objects for 'distance' functions d, and 
do. For spherical distance d, up to three objects were presented simultaneously. 

First, we tried the Euclidean distance function d,. Judging from our experience 
the network was able to learn only if the stored vectors were set close to zero prior to 
t.raining. The noise resistance of t.he network eqnipped with t.he Enclidean di st.ance was 
rat.her smal l .  The hellfistic reasoning for t.his tinding is given in the !\ppendix. 

The term 

L (wi,?? 
(k,I)EI 

of Eq. (12) in the Appendix - the indices correspond to the digitization of the two 
dimensional space and I denotes the set of zero elements of input vector x of a given 
extended object - is responsible for the poor performance of the Euclidean distance 



function. This term ma,nifests itself in large distance valiles for inputs with a, fair amount 
of !lOise. In lhis way one single neuron thal has small wi�) componenls can always win 
the compeLition. Training - as the analysis in the Appendix shows - tends to lead lo 
this alLracLor. 

The simplest way of eliminating lhat lerm is to modify the Euclidean distance func­
tion Lo <13 of (4). 'DisLance' function <13 has a sLrong resemblance to Lhe spherical distance 
functions <11. BoLh of lhese functions solve the problem. There are other possible so­
Illtions to this problem, sllcb a$ trying to decrease the mean vallie of the in itial noise, 
or the learning rate, or start the learning rate from I and changing it in an appropri­
ate fashion ( Ilesieno, 1988). Analysis shows, however, I, h at I, he sp herical di stance works 
better lInder more demanding conditions. 

Sing le-object training resllits are shown for the spherical distance fllnction in Fig.'J . 

The results we present from now on were produced with this distance function. 
One of the results of the competition is that if one increases the size of the local, 

extended objects one or more neurons may lose their receptive fields: in other words may 
have near zero stored vectors. Neurons lose their receptive fields by first approaching a 
corner of the two dinlenslonal region. The nUlnber of neurons ha-ving nOll-zero receptive 
fields depends on the ralio of the bounded Euclidean region and the average area of the 
local, exlended objects. The bounded Euclidean region is shared by Lhe neurons: il is 
divided inlo nearly non-overlapping regions lhaL correspond to the average object size. 

In anolher set of Lraining runs when Lwo or Lhree (more lhan one) randomly posilioned 
objects were simultaneously presented lo the neLwork Lhe results were very similar: filLers 
were formed just like before, however, the rest of the filter vectors of the neurons were 
noisy. In other words the filters (the receptive fields) were surrounded by a low noise 
homogeneous background showing that winning neurons learnt of the presence of other 
objects as well and represented those as a random background. This is an attractive 
property of the algorithm; our strong competition forces the neurons to learn the most 
important correlations that being the locality of single objects and thus the neurons can 
neglect the correlations between two or more randomly positioned objects. To improve 
the winning chances neurons develop a random like background if more than one object 
is inputted to the network simultaneously. The background was considerably larger for 
the three-object case than for the two-object case. There was no noise for the single­
object case. The two- and three-object filters are shown in Fig.5. In the following only 
the single-objecl case will be sludied. 

It is worth noling lhat in the general case some neurons may be sentenced to have 
very small - bUl nonzero - receplive fields. As the receplive field of lhese neurons 
never becomes exactly zero one may hope lhat these neurons are only 'sleeping' or 'nol 
needed al present' or 'of small role' bul nol dead neurons. As il is shown in the paper 
these 'small role neurons' may recover and assume an equal role if adaptivity is kept and 
the external world changes. 

Topology by Hebbian learning 

It is a relatively easy task to build up the internal representation of the topology of the 
external world when the spatial filters are given. Let us introduce connections between 
neurons. These connections can represent the topology of the given metrical topogical 
space in the following fashion: The closer the stored vectors of two neurons are in the 
metric of the topological space, the stronger should be the connection between the two 



u 

neurons and vice ,\.Tersa: if the connect.ing weight bet,veen two neurons is larger than zero 
then Lhe veelors of the Lwo neurons should be close in the melric of Lhe Lopological space. 

To form lhese connecLions one needs to nole thaI a locaL eXLended object may overlap 
with two spatial fillers and may excile I wo neUIOns simultaneously. This means thaI 
the closer two spatial fillers are, lhe more often Lhe neurons represenling them fire 
simultaneously. In our notation it means Lhat Lheir Di values are smalL One may use 
this fael Lo develop conneelions bel ween the neUIOns. LeL us sel the strengLh of the 
connections t.o 7.ero at t.he beginning and 11se t.he fol lowing Hebbian updat.e rule in a 
paral lel fashion d1l1'ing the whole training proced1l1'e wit.h training rule (6): 

(7) 
where syn = 1 - Dr') is lhe measure of similarity for thei'h filter for a given inpul, 'Iii 
denotes the strength of lhe connections, ;3 is lhe learning raLe, and IV denotes thaI both 
the 8i and the Di values are normalized Lo lhe [0,1] inlervaL Connection sLrenglh 'Iii 
is conslrained 10 inlerval [(I, 1]. The best resulls were achieved when only the wllllllng 
ne11ron could update it.s connections: 

IN) IN) D.q . .  = :3 (u. + u .. J (8. 8· - q.J I,} , .'1 t .'1 .7 � .7 I} (S) 
where Yi is the outpllt of the ith neuron after competition: the output is 1 for the 
winning neuron and 0 for the others. In this way Yi + Yj is not zero if and only if 
either the ith or the jth neuron was winning. Connection strengths are shown in the 
left hand side of Fig.5. Connection strengths are depicted by the thicknesses of the 
connecting lines between neurons. The position and the size of the circles represent 
the position and the size of the spatial filters, respectively. A non-connected topology 
was also produced by showing local, extended objects along three horizontal strips only 
(see the right hand side of Pig.fi). figure () shows well developed connections between 
neighboring filters in both the one dimensional and the two dimensional topologies. It 
is worth noting that connections between neurons that are farther, i.e. connections that 
would  represent. medium-range t.opology properties, did not develop in t.his model. I n  
the present. t.raining exampks filters are formed according t.o t.he object, si7,e and t hus 
the object. may exci(,c on ly neighboring ne11ron s .  It. is  rea.sonabk t.o expect, however, 
that. if t.hey have a dist.ribut.ion of object. or fcat1l1'e si7.es, filters wi l l  develop according 
to the average si7,e. The larger-t.han-average object. woulel develop connections between 
non-neighboring neurons as well if topology allows it. 

The neural gas model of Martinetz & Schulten (1991) could not build up the correct 
topology for this case as it is not based on the neighborhood relations of topological space 
provided by our local, extended objects, but is based on a closeness relation in the metric 
of Euclidean space into which the topology is embedded. As all example assume, that 
the inpllt is such that the closest neuron ha,s the top-left receptive field. Second closest 
neuron is lhen eilher lhe middle-left or lhe lop-middle neuron or both according 10 the 
exact position of lhe object. ThaI is the neural gas model would develop conneelions 
bel ween Lhe top-left and lhe middle-left neUIOns 100 and the conneelion strud ure would 
become two a dimensional grid . 

The neural gas algorithm in ils presenl form is capable of representing lhe lopology 
of on ly those worlds in which the closeness relation belonging to the topology and t.he 
closeness relation belonging t.o the �:uclidea.n distance are identi ca l .  Sl ight modifications 



- modificat.ion of inputs and modificat.ion of distance function - can make the neural 
gas model work for all cases Loo. 

n has been shown for Lhe case of single-object Lraining lhaL a laleral weighl % is 
non-zero if and only if lhe presenled local objecL series has an infiniLe subseries in a way 
LhaL Lhe objects of lhis sub series overlap wilh Lhe ouLer inverse image of boLh Lhe Wi and 
Lhe Wi vectors (Szepesvari, 1992). Since lhe presenLed objecLs are local objects one may 
conclude thaI Lhe seLs represenLed by lhe Wi and Wi vectors are locally connectecL i.e. Lhe 
non-7.ero lat.eral weight.s represent the topology. The necessary and sufficient condition of 
the proof is that both t.he digit.i7.ation of t.he t.opological space and t.he dist.ance function 
of the neural net.work should satisfy a separability condition (S7.epesve.ri , 1 992) . The 
separabil ity condit.ion generali7.es t.he view (naive in mathematical terms) that filt.er 
response should be 7.ero if and on ly if the filt.er does not. overlap with  t.he input.. This i s  
the very point where the Euclidean distance fails. 

Figure 7 shows the connection strengths as a function of 'distance' d3 of the spatial 
filters. 

Topographical map and Kohonen training 

The Hebbian connections allow us Lo ulilize Lhe Kohonen Lype neighbor Lraining, i.e. 10 
inLroduce a cooperaLive learning scheme and Lo speed up Lhe adapLivily of Lhe neLlVork 
in a changing environment. The closeness or connection sLrengLhs of Lhe neurons in Lhe 
Kohonen map are predefined. Here we develop connecLion sLrengLhs in a dynamic fashion 
and t hat. leads t.o a new problem when introducing Kohonen t.ype neighbor training: 
Cooperative training may win over fi Iter forming competition . The original Kohonen 
neigh bor training nlay be written as 

ifi of k; 
ifi = k. (9) 

where index k denotes the winning neuron. and the connection strengths qik may be 
considered as predefined time dependent functions. Their initial values determine an 
inherited closeness between neurons. The said closeness is a slowly decreasing function 
of time whereas function H is a strictly decreasing monotonic function of distance; in 
other words, it is a that is a strictly increasing monotonic function of connection strength 
q", with : H(O) = 0 and H(l) = 1. 

If one tries to establish an adaptive cooperative neighbor training then first the 
inherited rule of closeness should be replaced by rule (7) in order at determine the 
closeness relations. However, this simple replacement and the usual function H lead 
to t.he loss of compdit.ion between neurons: the recept.ive fields of different neuron s 
grossly overlap and become ident.ical asympt.otically. This i s  due to the fact that. if t.he 
distance of the weights of t.wo neurons is small then t.hey efficiently teach each other 
and the connection st.rengt.h between them further in creases a.s they arc often active 
simult.aneously. 

i\ solut.ion to this problem is t.o choose another function fro Such a function should 
have the following properties: (i) it should be positive, (ii) start from zero, (iii) increase 
tovirards a InaxlnlulIl, and (iv) decrease for larger argulnents dovirn to zero. Condition 
(iv) ensures that neurons cannot shMe learning if they Me too close to each other. The 
other conditions ensure that neurons fM from each other cannot learn the same input. 
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A function of the following form fI( x) = (( 1-:e)3 (e-"(x -e-"() satisfies these conditions 
if its parameters are appropriately chosen and competition persists. Parameters for our 
case were chosen to be ( = 100, I = 10. In these runs, just as in the other experiments 
to be discussed later, laleral connection development and lhe neighbor training Lhrough 
these connection" were applied from the very beginning, i.e. the development of laleral 
conneclions and Lhe development of feed-forward connections were bolh on from the very 
beginning. 

It is quite surprising lhat there is a large family of training rules that does nol ulilize 
the arbitrary function fI and keeps the cooperative properties: The idea is that one may 
try to usc the activity of the neurons in the learning rule. The point to remember here 
is that in the fully devcloped neural nctwork we hope that 'far away neurons' will have 
disjunct receptive fields and a given input will give rise to no activity of most of the 
neurons. The learning rule may now be expressed as: 

if i # k; 
if i = k. 

(10) 

where k denotes the index of the winning neuron, a and b are fixed positive powers. In 
this learning rule it is the dependence on the activities that results in no simultaneous 
learning for remote nemons. Factor (1- qik) decreases cooperativity for neurons coming 
too close Lo each other. In this way dynamic balance is ensured for cooperative learning. 
Based on our numerical experimenls powers a and b should bolh be larger Lhan :I 10 keep 
compeLiLi vity. Inlegers bel ween 2 and 4 were tried and all of Lhem succeeded. In the 
limil of a ami b go Lo infinity the neighbor lraining of (10) disappears ami one is left wilh 
a simple compeLilive neLwork. It is Lhen expected lhaL lhe training rule (iD) is slable 
for a and h val11es bot.h larger t.han two. This fami ly of learning nIles seems appropriat.e 
a.s a means of set.t.ing 111' adapt.ive cooperative Kohonen type neigh bar t.rain ing. The 
advant.ages of s11ch t.raining are dealt. wit.h below. 

It. may be expected t.hat cooperative neighbor training helps adapt.ivit.y. Since in am 

model t.he distinct. learning r11les may be compared in a relatively 1 1nambigo11s fashion 
we tried separate runs so that we could compare the adaptivity of a competitive network 
and the network that utilized neighbor training (10), by applying a sudden change in 
the average object size. Networks respond to the change by changing filter sizes and 
creating or destroying filters. The time evolutions of filter sizes are shown in Fig.8. In 
the numerical experiment object size was decreased to one half of its original size. The 
competitive network (left side) responded with a sudden decrease in the size of active 
fillers and developed a new filler much laler. The network lhal ulilized neighbor Lraining 
did not allow the acti vity of any of its neurons 10 decrease 10 very low levels and both 
the decrease in Lhe size of the acLi ve filters and lhe increase in lhe small acli vity filLers 
took place al a high rate. This Willi followed by a slow decrease of the acLivity of one 
neuron, lhe only one thaI could nol play a role in lhe new situalion and was sentenced 10 
remain silent. The comparison clearly shows that adaptivity increases with cooperative 
learning . 

Conclusions 

Competitive neural networks having local, extended objects as inputs can be used to 
form spatial filters, are able to discover the topology of the external world, and offer a 



means of designing neighbor training, which significantly improves adaptivity. The use 
of local, exlended objecLs helps in reducing lhe necessary a priori informalion aboul Lhe 
exLernal world buill inlo self-organizing neural neLworks. 

Acknowledgement is made Lo Lhe referees for Lheir conslrucli ve cri liciDIll. 



Appendix: Problems with the robustness of the Euclidean dis­
tance function 

The aeli viLy of Lhe ith neuron Illay be expressed as: 

1 TJ--l - n2 
n 

'\' ( . (i))2 L ,.T/d - wid 
k.l=l 

(II) 

where the indices correspond to the digitization of the two-dimensional space. Let us 
denote the set of zero elements of the input vector x of a given extended object by I. 
The number of elements of set I are denoted by I I I. The sum of Eq. (11) may be 
divided inlo two parle: 

2 2 '\' (i) 2 '\' .  (i) 2 (n D;) = � (tckl) + � (xu -Wkl) 
(k.l)ET (k,l)�T 

(12) 

Let ns set the components of the initial stored vectors aronnd  W(U) with a smal l noise 
con!.cnt. Withont loss of general ity one may assmne that the first nenron wins for the 
first presented input vector x. Let us assume as well that I I I is typically large, i.e. the 
extended objects are smalL Now, we may approximate the average updating as: 

wP) = (1 - a)w(O)' and 

'/1,(1) = w(o), if i # 1, 
where the bar denotes averaging over the components of the stored vector of a neuron. 
Let us examine the case that a neilion has won and a new randomly positioned object is 
shown to the neural network. 'We are interested in the probability that the same neuron 
shall win. To this end let us give upper and lower estimates for the activities of the 
previously winning and the other neurons, respectively, in the new presentation: 

(n' D,)' < (1 - a)'w(O) I I I +(n'- I I I) 
(n2/)i)' > wlo) I I I 

hearing in  mind that the weights always fall into the [0,1] in!.crval . If 

(11 ) 

D, < D"i # 1 (L'i) 
then in the next training step it is the first neuron that wms again. This inequality, 
however, is easily fulfilled. The inequalities (B), and (15) lead to 

III In' >1/(1 + (I - (I -O)2)W(O)J (16) 
The larger W(O) and a, the  easier it is  to fnlfil this condition . Let ns assnme that the the 
first nenron won t times in a row. If ineqnality 

I T I In' > 1/(1 + (I - (I - O)2t)W(0)) (17) 
is fulfilled, then it wins again. Inequality (17) shows that the first neuron's chance of 
winning keeps growing. Taking the limit of t ---; x we have 

I I I I'? > 1/(1 + 10(0)) (18) 



and this expression is independent of o .  This gives rise to an upper limit of W(O) . Above 
that limit, i.e. [or sIllall objects, the Euclidean distance [uncLion cannol solve Lhe problem 
or, al least, one may say thal the probability o[ having only one winning neuron is larger 
than zero: according lo our experience it is close to 1. Having more lhan one neuron, 
however, does not Illean Lhat more lhan one spatial filter will be formed. The question 
is how to [orm separale fillers. As iL is shown in the paper Lhe ' spherical dis Lance' is an 
appropriate solulion o[ lhis problem. 
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Figure captions 
• Figure 1. Digitized spatial Gaussian jilters 

Gau",ian filler" of a llVo dimenbional box correbponding 10 expre""ion" :  upper 

left ' ,  'upper middle' 'upper right' ,  eLc. The figure Willi drawn by generaling pixel" 

randomly wilh probabililie" lhal corre"poml Lo Lhe gray "cale value". 

• Figure 2. Archileclul'e of lhe arli{icial nt uml nelwork 

The ANK has a seL of inpul node". Inpul" connecLed 10 Lhe nelwork are denoLed 
by "'i ,  i = 1,2, . . .  , n. Every inpul node is connected 10 every neuron of Lhe neLwork. 

Every neuron stores a vector of the input space: neuron j stores (w;j) , w�:i) , . . .  w�) ) .  
Neurons develop another set of connections, the (qkl) topology connections , an 

internal representation of the topology of the external world. 

• Figure :3 . l '�pical input 

The hox on the ldt hand side shows an ohjed at. a given posit.ion t.hat. was t.rans­
mit.ted t.o t.he inp11t. nodes. The middle hox shows the o11t.pnts of t.he inp11t. nodes 
developed . Tnpnt nodes developed adivities according t.o their overlaps with t.he 
inp11t.ted ohjed. The npper and the lower hoxes on t.he right hand  si de show t.he 
ontpnt.s ni' ) of t.he ne11rons and the st.ored vedor of t.he winning ne11ron , respec­
tively. 

• Figure 1. Training 7'esults on self-organized filter for'mation dur'ing training The 

numbers show the training steps. F ilters arc formed during the first 5000 steps. At 
later steps the configuration undergoes minor modifications in accordance with the 
random object generation, but stays stable. The figure was drawn by generating 
pixels randomly with probabilities that correspond to the gray scale values. 

• Figure 6.  Learnt one and two dimensional topologies 

Connection thicknesses show the strengths of topology connections qk/. In the left 
hand side figure objects were genera.ted everywhere in the two dimensional box. 
No line means approximately zero strength connections. In the right hand side 
figure objects were generated along three horizontal strips in the two dimensional 
box with Mbitrary ordina.tes. No line means zero strength connections. 

• Figure 7. ;110notonicity of topological connection strengths 

Strength of topology connection qkl a.s a function of overlap of filters. The overlap 
of the k'h and II" filters is defined as Li . .i a{�) w1? 

• Figure 8.  Adaptivity of ANN's 

After a sudden change in the external world or, here, the average object size. 
networks try to adapt. Adaptation means a change of filter size and creation or 
death of filters. The graph on the left hand side shows the evolution of filter sizes 
for the competitive network. The graph on the right hand side shows the evolution 
of filLer "i�e" for a compeliLi ve nelwork lhaL developed Lopology connections and 
Kohonen lype neighbor lraining. The graph, depict poinl" from 100,000 leal'lling 

sleps prior Lo and 100,000 leal'lling "lep" aILer lhe sudden change. SLep number 



zero is the time of the sudden change . The region of the first 20,000 steps after the 
change is enlarged and enclosed wilh dashed lines. Size is defined as Li, i (U{�) )2 

• Figure 5.  Training n:sults of the three-object case 

Receptive filters are formed in the case of training with by showing three randomly 
positioned objects simultaneously. The noisy background is the result of the pres­
ence of more lhan one object al lhe same Lime. The noise increases Lhe avarage 

filLer size resulting in Lhe slrung decrease of lhe recepli ve field of one neuron in Lhe 

lhree objecL case. 
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Figure 4: Training results on self-organized filter formation during training 
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Figure .5 : Training results of the two- and three-object cases 
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