English consonants: Phonemes and Allophones

Effects related to aspiration and 'devoiced' voiced sounds and a few other issues

Phonemes

- Strict, detailed definitions of the term phoneme are complex
 - Not part of this course
 - Take phonology courses to fight over the details
- Rough and ready idea is indispensable for practical phonetics
 - Must make a distinction between phonemic and allophonic differences

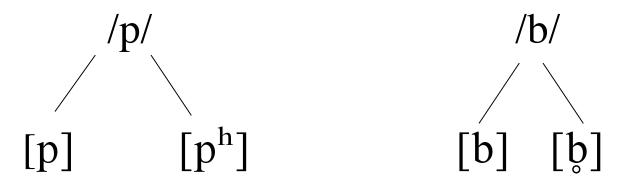
Rough definition of phoneme

- Phoneme (*Concise Dictionary of Linguistics*, Oxford U. Press 1997)
- "The smallest distinct sound unit in a given language: e.g. /^ttɪp/ in English realizes the three successive phonemes, represented in spelling by the letters *t*, *i*, and *p*.

Phonemic differences vs. allophonic differences

- Differences in speech sound that can signal differences between two different words are *phonemic differences*
- Other differences in speech sound that are clearly audible are only *allophonic differences*
 - 'pronunciation variants' that cannot signal different words.

Representing allophonic differences

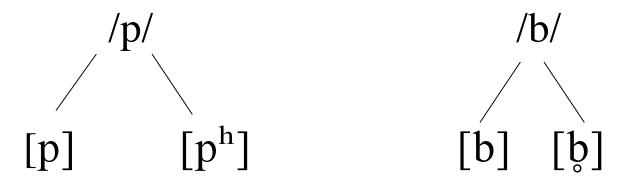

- 'Broad' (= coarse-grained) transcription enough for phonemic representation
 - Choose simple symbol for a 'representative' (allo)phone
- 'Narrow' (= fine-grained) transcription often requires diacritics
- Diacritics for stops
 - p^h aspirated p
 - p⁻ 'p⁻ with inaudible release' ('unreleased p')
 - \bar{b} '(partially) devoiced b'

Examples: 'pie, spy, buy'

- 'pie' ['p^haj]
- spy ['spaj]
- 'buy' ['b̥aj] or ['baj]
- Which of [b] [p^h] [p] are allophones of the same phoneme?

Answer: 'pie, spy, buy'

Phonemes in '/' (slash or solidus, pl solidi) marks


Phones in square brackets

Examples 'Stop.', 'Stop!', 'Stop!!', 'Stob!'

- 'Stop.' ['stap']
- 'Stop!' ['stap]
- 'Stop!!' ['stap^h]
- 'Stob!' ['stab] or ['stab]
- Which of [b] [p^h] [p] are allophones of the same phoneme?

Answer: 'Stop(!!!) Stob.'

Phonemes in '/' (slash or solidus, pl solidi) marks

Phones in square brackets

Rough notation

Conditioned allophone: The phoneme /X/ is realized as phone [y] in environment between A and B /X/ --> [y] / [A] _ [B]

Allophone in **free variation** /X/ --> [y] or [z] (optionally)

Example allophone rule

 $\{ [p^{h}] / \# _ \\ /p/ --> \{ [p^{h}] / \breve{v} _ 'V \\ \{ [p^{\gamma}] / _ \# (optionally) \\ \{ [p] / s _ \\ \{ [p] elsewhere \\ \# = `word boundary' \\ \breve{v} = `weak stressed` or `unstressed` or `reduced` vowel` \\ 'V = primary- stressed full vowel \\ _V = secondary-stressed (full)$

Translation

- The phoneme /p/ is realized as an aspirated p (the phone [p^h]) at the beginning of a word or between a weak vowel and a stressed vowel.
- It is realized optionally as an unreleased (inaudibly released) p (the phone [p[¬]] word finally
- It is realized as an ordinary voiceless (un- or weakly- aspirated) stop after /s/ and elsewhere.

Allophone rule sheet to follow

- We will examine some important allophones in English Cs and Vs
 - Then I'll handout rule summary (and post on web)
- For details see Chapter 3 of Rogers and Appendix F (p 292 298)
 - Our rules will be much shorter

Allophones of Consonants

• Many important details in English 'narrow phonetics' related to voiced/voiceless distinction in obstruents

Allophones of stops: Aspiration and release

- Consider the following words
- 'tip', 'pit', 'spit', 'plum', 'queen', 'apt'
- Broad and Narrow transcriptions
- 'Line drawings' showing relative timings of constrictions at articulators

- (See Rogers p 25-27 for overview)

Aspiration etc. 'pit, spit'

'pit'

'spit'

/ 'spit / ['spit^h], ['spit[¬]], ['spit]

/p, t, k/ **always** aspirated at beginnings of words in stressed syllables (always)

Never aspirated after /s/.

Variable word finally, often with inaudible release ('unreleased')

Timing of articulator movement

- Many details of English consonant allophones can be illustrated with diagrams
- Very rough sketches of
 - Relative degrees of constriction of supra laryngeal articulators
 - Characterization of lottal activity
 - Relative timing of constrictions of different articulators and of changes in glottal activity

Simple example

- Consider:
 - Voiced, voiceless and voiceless aspirated stops
 - E.g. [d] [t] and [t^h]
- All involve very similar activity of the supra glottal articulators
- What differs is timing relations to glottal events
- Line diagrams can make this idea clear

Timing diagram Rogers p 51

Graphic unavailable (see Figure 3.3 of Rogers 2000)

SLVT articulators in Rogers' line drawings

- Rough cut of major articulatory regions
 - Supralaryngeal articulators
 - Labial bilabial or labiodental
 - Coronal tongue tip or blade
 - Dorsal body of tongue
 - Velic velo-pharyngeal port
 - Glottal activity (e.g voicing state)

For supra glottal articulators

- Separation of lines relates to degree of constriction at that articulatory region
- Closed : _____ stops
- Slightly open: == fricatives
- More open: _____ approximants
- Most open : vowels

More articulators (assignment 2) Rogers p 35 Figure 2.5

• Graphic unavailable

My timing drawings: glottal states

• Voiceless states of **glottis**

=:=:=: Slightly open (as in aspiration or [h]) ===== Closed tight as in [?]

— Unknown (either === or :=:=:)

- Voiced state of glottis (typing)
 vvvvvvvv -- voicing (folds buzzing)
- Voice-ready (typing)

xxxxxx -- vocal folds about ready to voice but not buzzing

My timing drawings: articulators

- Rogers' "velic" = my "VPPort"
- Typing:

	- Closed articulator (as in stops)
<	Opening articulator (<<<< longer opening)
>	Closing articulator
=:=:=:	Slightly open (as in fricatives)
• • • • • • • • • • • • • •	Pretty open articulator (as in approximants)
0000000	Quite open articulators (as in vowels)

Timing diagrams See Rogers p. 51 fig 3.3

/ t a / Near Zero VOT Coronal ——<00000000000 Voicing starts at < Glottal =:=:=:vvvvvvvvvvv (short voicing lag)

/tha/Positive VOTCoronal ----<000000000000</td>Voicing starts after <</td>Glottal :=:=:=:=::::vvvvvvvv(long voicing lead)

English 'partly voiced' stops (see Rogers' p 47.)

[t a] Unaspirated 't' Coronal ——<00000000000 Voicing starts **shortly after** < Glottal :=:=::vvvvvvvvvvv

Devoiced 'd' and unaspirated 't' may often be perceptually equivalent

Obstruents weakly voiced in English

- Many languages work hard to keep voicing going during obstruents
 - E.g. French, Russian
- English does not
 - Phonemically voiced stops, fricatives and affricates only likely to show true voicing during constriction when they are between voiced sonorants (approximants and vowels)

Examples

- /'ba'babsə'bab/ -->
 ['ba'babsə'bab]
- /'za'zazsə'zaz/ -->
 ['za'zazsə'zaz]

[d] vs. [t] ? Any real difference

- 'Devoiced' obstruents can be very similar to voiceless unaspirated sounds with respect to 'actual' voicing
- Small differences may remain in 'excitation' from larynx
 - Other 'secondary features' of 'devoiced voiced' sounds resemble ordinary voiced sounds
 - so they may **sometimes** be perceptually separable

Secondary features of Voiced vs voiceless obstruents

- Voiced
 - Lower amplitude of burst or frication
 - (= '*less loud*')
 - Constriction duration
 shorter (VCV)
 - Preceding vowels
 longer (VC)

- Voiceless
 - Higher amplitude of burst or frication
 - (= '*louder*')
 - Constriction duration
 longer (VCV)
 - Preceding vowels
 shorter (VC)

Side effects

- So far we've looked mainly at allophones of voiced and voiceless obstruents themselves
 - Some special things happen to things next to obstruents
 - e.g. vowels are shorter before voiceless obstruents
- Next: Effects on approximants next to aspirated obstruents

'Spill-over' effects of aspiration

Open glottis (aspiration) extends through much of /l/

Flapping (tapping)

- Flapping (tapping)
 - /t/ and /d/ often realized as $[r] / V_{v}$
 - Voiced alveolar flap (or tap) between stressed and 'weak' vowel
 - This is 'opposite' of one good aspiration environment \breve{v}_{V}
 - Roughly speaking
 - » aspriation makes stops 'more devoiced and less sonorant'
 - » flapping makes /t,d/ 'more voiced and more sonornant'
- Example:

'attack' [ə'thak] vs. 'attic' ['ærık]

Flapping more examples

- Example from child's speech
 - Baby: 'Daddy' ['dæ₁di]
 - Toddler: 'Daddy' ['dæri]
 - 5-year old (extra polite): '*Daddy*' ['dæ₁t^hi]
- More examples

'buddy' /'bA di/ --> ['bA r i]
'butter' /'bA dəI/ --> ['bA r σ]
'sitter' /'sItəI/ --> ['sIrσ]
'city' /'sIti/ --> ['sIri]

Place assimilation and coarticulation

- Small changes in place of articulation in some consonants
 - Alveolar consonants become dental before θ ð
 'tenth' /'tɛnθ/ --> ['tɛŋθ]
 - 'width' and 'stealth' may show similar changes in /d/ and /l/
- Stops
 - Labialized before rounded vowels [w] and [J]
 - 'dwell' ['d^wwɛł]; 'Gwen' ['g^wwɛ̃n], 'twin'; ['t^{wh}wı̃n] or (?) ['t^mmĩn],

Complex coarticulation in /stop+r/

- /t/ and /d/ retroflexed, rounded (and possibly affricated) before /1/
 - 'train' ['t^hiẽjn] or ['tṣ^wiẽjn] or maybe even ['tṣ^wiẽjn]
 - Kids sometimes spell 'train' as 'chrain'
 - 'drain'
 ['dıējn] or ['dΩ^wıējn]

'Spill-over' effects aspiration and rounding coarticulatic.

Broad transcription /kwik/. Open glottis (aspiration) extends through much of /w/, yielding $[w_i]$ or [M]

Clear and dark 'l' in NA Eng.

- At beginning of syllables in N.A. English, /l/ is relatively 'clear' [1]
- At end of syllables, it is relatively 'dark' [1]
 - Often described as 'velarized' but may more often be pharyngealized
 - Dark [1] often shows up as a 'syllabic' l
 - We will not systematically distinguish it from schwa+dark 1
- Examples
 - 'pal' $['p^{h}æt]$ v. 'lap' ['læp]
 - 'little' ['lɪrəł] or ['lɪrɨ]

AK shows mainly pharyngeal constr. in [1] Articulation of some laterals (sagittal MRI tracings)

• Graphic unavailable. See web link below

Laterals from MRI http://www.icsl.ucla.edu/~spapl/projects/mripix/figg3.html

Syllabic nasals and glottal stop

- 'Mountain', 'sutton', 'sudden'
 - Broad transcription /'mawntən/ /'bʌ tən/, /'sʌ də n/,
 - Narrow transcription (casual pronunciation)
- 'Mountain' ['mawn?n] or ['mawn?tn]
- 'Button' ['bΛ ?n] or maybe ['bΛ ?tn]
 - See Rogers p 55 "RP Glottalization"
 - Something much like this may happen frequently in NA English
- 'Sudden' ['SA rn], 'redden' [' $J\epsilon rn$]

Inaudible releases

- Unreleased (inaudible release) stops often occur in stop clusters
 - 'apt', 'act', 'abdicate'
 - $['ap^{t}] ['ak^{t}] ['ab^{d}_{k}h^{h}ejt^{r}]$
- Unreleased stops often occur prepausally (e.g. utterance final)
 - Even possible for word like ['æk't'] making final stop very difficult to hear.
- Many languages do not allow inaudible releases of stops
 - Require aspiration or brief vocalic release
 - Compare: ['æk[¬]t^h] ['æk^ht^h] ['æk[¬]t^h]

Some additional details

- Most of the things so far might show up on a quiz for 'moderately narrow' transcription
- Some additional details will **not** show up in any live **transcription** quiz ever
 - Some facts discussed might be addressed in multiple choice or short answer questions

'Inherent' rounding in some Cs

- N.A. English /1/ is pretty strongly rounded
 - Rogers p 60.
 - *Could** be transcribed most accurately $[I_{v}^{w}]$
- /∫, ʒ, t∫, dʒ/ are also somewhat rounded (compared to /s, z/)
 - These *could** be transcribed / \int^{w} , 3^{w} , $t\int^{w}$, $d3^{w}$ /
- *But we won't bother in 'moderately narrow transcription' ??? What would we do with 'Schreck', 'Schwepps' vs. 'she'

Special releases (plosions) Nasal and lateral releases

- Stops before homorganic nasals (mainly d+n) often result in a 'nasal release' or 'nasal plosion' (Rogers p 57)
 - Can be transcribed with d + raised n
 - 'Rodney' ['Jadⁿni]
 - 'kindness' [' $k^hajnd^nn \vartheta s$]
- Similarly, 'd' before 'l' may lead to 'lateral release' or 'lateral plosion'
 - Can be transcribed as d + raised l
 - 'sadly' [sadl1i]
- What about 'butler'??? $[^{l}b\Lambda ?t^{l}l \exists J]$ emphatic $[^{l}b\Lambda t^{l} \exists J]$