# Basic acoustics (pt. 1) 

Rogers Chapters 7 and 8

## Sound

- What is sound?


## Sound

- What is sound?
- Vibrations (usually in air) that can be heard
- From Wikipedia: Sound is vibration, as perceived by the sense of hearing.
- Sound waves
- Compression/rarefaction wave carrying the vibrations


## Waves

- Compression/rarefaction wave carrying the vibrations
- From Wikipedia:
"In more technical language, sound is ...[a] series of mechanical compressions and rarefactions or longitudinal waves that successively propagate through media that are at least a little compressible ...


## Waves transverse and longitudinal

- Transverse - (not sound)
- Motion particles in
- Stadium wave
- Ripples on pond
- Rubber tubing or rope
- Longitudinal (sound)
- Pinched slinky
- Sound
- Great demos ( esp. balloon)
- http://myweb.dal.ca/mkiefte/


## Compression waves to waveforms

- Propagation of sound
- Not so important for us
- What ix important for us:
- Compression/rarefaction wave strikes microphone and is recorded
- Software allows us to see WAVEFORM of sounds
- Waveform
- Display showing the amplitude of a sound at each instant of time
- Amplitude is proportional to pressure 'seen' at microphone


## Waveform of the word 'two'



Note: Amp. ('d.u.') $=$ amplitude in 'digital units'
(proportional to voltage at microphone- scaled by computer hardware)

## Speech waveforms are complex

- We need to start with something simple
- Sine waves
- We can study some basic properties of simple sounds
- Later we see that more complex sounds can be broken down to such simple sounds


## Sine waves (sinusoids): simple periodic wave

- Sine wave: Simple shape (unlike speech)
- Sine waves have the same shape as the sine or cosine functions of high school trigonometry
- Shape repeats itself periodically
- Periodic means 'exactly repetitive'
- The largest pattern that repeats itself is called a cycle or period


## The basic shape (Wikipedia):



Neterizontal or X -axis is angle, Vertical axis is value

## Waveforms of sinusoids

- Waveforms of sinusoids have same shapes as the trig functions
- Waveform plots involve
- Horizontal (x-) axis: time
- seconds ( s ) or milliseconds ( $\mathrm{ms}=\mathrm{s} / 1000$ )
- Vertical (y-) axis: amplitude
- Units may vary (volts, micropascals, computer digital units )
- Proportional to sound pressure changes in air
» And to voltage changes from microphone
» Results from diaphragm of microphone moved by 'vibes'

Waveform of a sine wave


# Amplitude and frequency( Rogers Figs. 7.4 and 7.5) 

[Image not available]
[Image not available]

## Sinewaves (sinusoids) : simple periodic sounds

- Sine wave : simple sound
- Sound of a tuning fork is very close to sine wave
- A steady whistle is fairly close to a sine wave
- Electronic examples


## Demo Whistle

- Recording of a whistle (WaveSurfer)
- http://www.speech.kth.se/wavesurfer/
- Stockholm KTH (Royal Institute of Technology)
- Kåre Sjölander and Jonas Beskow
- DEMO of PROGRAM


## Period and frequency

- Time span it takes complete pattern repeats is called the period of the sine wave
- Measured in seconds (s) or milliseconds (ms)
- Frequency is number of complete periods per seconds
- Measured in hertz (Hz)


## Converting period to frequency

- $1 \mathrm{~Hz}=1$ complete period per second or one full cycle per second
- (old name for Hz was 'cycles per second')
- Example: period $=.01 \mathrm{~s}$
- If a cycle repeats in $.01 \mathrm{~s}=10 \mathrm{~ms}$, there are 100 cycles in one second so frequency is 100 Hz
- General formula
[Freq in Hz$]=1 /[$ Period in seconds]
$=1000 /[$ Period in milliseconds]


## Demos: single sine wave

- Demonstration of sine waves ESynth
- http://www.phon.ucl.ac.uk/resource/sfs/esynth. htm
- UCL (U. College London)
- Mark Huckvale
- Can create sines and combinations of sines
- Can analyze chunk of speech as sines
- Spectral analysis


## Demos-combinations of sines

(subject to time and software limits)

- Demonstration of combinations of sine waves ESynth
- Can create sines and combinations of sines
- Can analyze chunk of speech as sines
- Spectral analysis


## The spectrum

- All sounds can be thought of as combinations of sinusoids
- All sounds can be analyzed that way
- Useful way to represent sounds is via spectrum
- X- axis is frequency
- Y- is amplitude (or intensity)
- Amplitude units often expressed in decibels (dB)
- But may be in pressure units or volts (V) or 'd.u.' (digital units)


## Adding sine of different frequencies

## Rogers Figs 7.8 \& 7.9

Waveform A:<br>Sum of 3<br>components

[Image not available]

Spectrum of A
X - axis frequency Y- axis 'Intensity' (What happened to time?)

## Spectrum: where is time?

- Ideal spectrum is 'timeless'
- Assume signal goes on forever
- A practical spectrum: the spectral section
- Applies to a limited time-stretch ( or section) of a signal
- Similar to the ideal spectrum of an infinite signal that matches our signal for the timesection of interest

