Sound

Basic acoustics (pt. 1)

Rogers Chapters 7 and 8

• What is sound?

- Vibrations (usually in air) that can be heard
 - From Wikipedia: Sound is vibration, as perceived by the sense of hearing.
- Sound waves
 - Compression/rarefaction wave carrying the vibrations

Nearey Ling 205

3

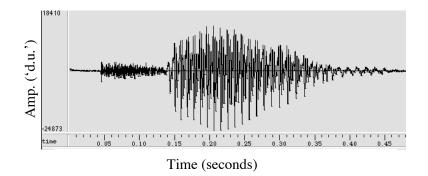
Sound

• What is sound?

Waves

- Compression/rarefaction wave carrying the vibrations
- From Wikipedia:
 - "In more technical language, sound is ...[a] series of mechanical compressions and rarefactions or longitudinal waves that successively propagate through media that are at least a little compressible ...

Waves transverse and longitudinal


- Transverse (not sound)
 - Motion particles in
 - Stadium wave
 - Ripples on pond
 - Rubber tubing or rope
- Longitudinal (sound)
 - Pinched slinky
 - Sound
- Great demos (esp. balloon)
 - http://myweb.dal.ca/mkiefte/

Nearey Ling 205

Compression waves to waveforms

- Propagation of sound
 - Not so important for us
- What *is* important for us:
 - Compression/rarefaction wave strikes microphone and is recorded
 - Software allows us to see WAVEFORM of sounds
- Waveform
 - Display showing the amplitude of a sound at each instant of time
 - Amplitude is proportional to pressure 'seen' at microphone

Waveform of the word 'two'

Note: Amp. ('d.u.') = amplitude in 'digital units' (proportional to voltage at microphone- scaled by computer hardware)

Speech waveforms are complex

- We need to start with something simple
- Sine waves
 - We can study some basic properties of simple sounds
 - Later we see that more complex sounds can be broken down to such simple sounds

5

7

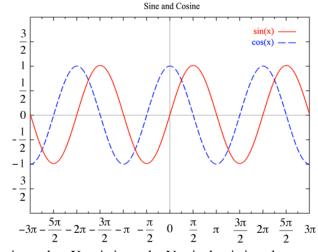
Sine waves (sinusoids): simple periodic wave

- Sine wave: Simple shape (unlike speech)
 - Sine waves have the same shape as the sine or cosine functions of high school trigonometry
 - Shape repeats itself periodically
 - Periodic means 'exactly repetitive'
 - The largest pattern that repeats itself is called a cycle or period

Waveforms of sinusoids

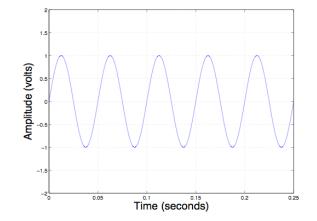
- Waveforms of sinusoids have same shapes as the trig functions
- Waveform plots involve
 - Horizontal (x-) axis: time
 - seconds (s) or milliseconds (ms = s/1000)
 - Vertical (y-) axis: amplitude
 - Units may vary (volts, micropascals, computer digital units)
 - Proportional to sound pressure changes in air
 - » And to voltage changes from microphone
 - » Results from diaphragm of microphone moved by 'vibes'

Nearey Ling 205


9

10

11


Nearey Ling 205

The basic shape (Wikipedia):

Horizontal or X-axis is angle, Vertical axis is value

Waveform of a sine wave

Nearey Ling 205

Amplitude and frequency(Rogers Figs. 7.4 and 7.5) Demo Whistle [Image not available] [Image not available] • Recording of a whistle (WaveSurfer) [Image not available] [Image not available] • Stockholm KTH (Royal Institute of Technology) • Kåre Sjölander and Jonas Beskow • DEMO of PROGRAM

Sameyfrequency

Different frequencies 13

Nearey Ling 205

Sinewaves (sinusoids) : simple periodic sounds

- Sine wave : simple sound
 - Sound of a tuning fork is very close to sine wave
 - A steady whistle is fairly close to a sine wave
 - Electronic examples

Period and frequency

- Time span it takes complete pattern repeats is called the **period** of the sine wave
 - Measured in seconds (s) or milliseconds (ms)
- **Frequency** is number of complete periods per seconds
 - Measured in hertz (Hz)

15

Converting period to frequency

- 1 Hz = 1 complete period per second or one full cycle per second
 - (old name for Hz was 'cycles per second')
- Example: period = .01 s
 - If a cycle repeats in .01 s = 10 ms, there are 100 cycles in one second so frequency is 100 Hz
- General formula
 - [Freq in Hz] = 1/[Period in seconds]
 - = 1000/[Period in milliseconds]

Nearey Ling 205

Demos: single sine wave

- Demonstration of sine waves ESynth
 - <u>http://www.phon.ucl.ac.uk/resource/sfs/esynth.</u>
 <u>htm</u>
 - UCL (U. College London)
 - Mark Huckvale
 - Can create sines and combinations of sines
 - Can analyze chunk of speech as sines
 - Spectral analysis

Demos-combinations of sines

(subject to time and software limits)

- Demonstration of combinations of sine waves ESynth
 - Can create sines and combinations of sines
 - Can analyze chunk of speech as sines
 - Spectral analysis

Nearey Ling 205

19

The spectrum

- All sounds can be **thought of** as combinations of sinusoids
- All sounds can be **analyzed** that way
- Useful way to represent sounds is via spectrum
 - X- axis is frequency
 - Y- is amplitude (or intensity)
 - Amplitude units often expressed in decibels (dB)
 - But may be in pressure units or volts (V) or 'd.u.' (digital units)

17

Adding sine of different frequencies

Rogers Figs 7.8 & 7.9

	Waveform A: Sum of 3 components	
[Image not available]		
	Waveforms of B, C,	
	D: the components	
	separately	
	Spectrum of A	
	X- axis frequency	
	Y- axis 'Intensity'	
Nearey Ling 205	(What happened to	21
	time?)	

Spectrum: where is time?

- Ideal spectrum is 'timeless'
 - Assume signal goes on forever
- A practical spectrum: the spectral section
 - Applies to a limited time-stretch (or section) of a signal
 - Similar to the ideal spectrum of an infinite signal that matches our signal for the timesection of interest