Geophysics 210 Fall 2008 Assignment 3 - Earthquake seismology

Question 1 (Fowler Chapter 4, problem5)
During a micro-earthquake survey in Turkey, an earthquake was recorded by three seismometers. The travel times are listed below. A map showing the seismometer locations is attached below.

Seismometer 1	Hours	Min	Seconds
P-wave	13	19	58.9
S-wave	13	20	4.7

Seismometer 2

P-wave	13	20	2.6
S-wave	13	20	10.8

Seismometer 3

P-wave	13	19	54.5
S-wave	13	19	57.4

Assume that the earthquake occurred at the surface.
The P-wave and S-wave velocities in this area are 5.6 and $3.4 \mathrm{~km} / \mathrm{s}$ respectively.

- 1
- 2

3

-

Answer the following:
(a) Distance of earthquake from station $1=$ \qquad km
(b) Distance of earthquake from station $2=$ \qquad km
(c) Distance of earthquake from station $3=$ \qquad km
(d) Time at which earthquake occurred =
(e) Mark the epicentre on the map above

Question 2

Prior to the construction of a nuclear power plant in Alberta, a seismologist is estimating the probability of large earthquakes.

The area has been monitored for 50 years and ten $\mathrm{M}>3$ events have been recorded.
(a) Sketch the appropriate Gutenberg-Richter relation. Assume $\mathrm{b}=1$
(b) Estimate the a value
(c) Estimate the repeat time of a $\mathrm{M}>6$ earthquake in this area.

Question 3

A newly discovered planet is being investigated by a seismologist.
It has a radius of 5000 km and is believed to have a core.
The outer layer has a uniform P-wave velocity of $8 \mathrm{~km} / \mathrm{s}$.
(a) P-waves are recorded from $\Delta=0^{\circ}$ to $\Delta=110^{\circ}$. Beyond $\Delta=110^{\circ}$ is a shadow zone where no P-waves are observed. Estimate the radius of the core.
(b) The travel time for the P-waves arriving at $\Delta=180^{\circ}$ and travelling through the centre of the planet is 23 minutes.

What is the P-wave velocity of the core?

Question 4

On the figure below, sketch the ray paths for the following teleseismic phases
(a) ScP and PcS for $\Delta=60^{\circ}$
(b) PKKP at $\Delta=60^{\circ}$
(c) PKIIKP at $\Delta=80^{\circ}$
(d) SKKS at $\Delta=90^{\circ}$ (2 possible ray paths)

Question 5 Read sections 4.2, 8.1 and 9.6 from the text book.

This assignment will be due in class on Tuesday November 252008
Office hours will be announced shortly.

