Geophysics 210 Fall 2008 Assignment 4 - Geomagnetism

Question 1

The magnetic dipole for Mercury has a value of $\mathrm{M}=3.2 \times 10^{19} \mathrm{Am}^{2}$ and the planet has a mean radius $\mathrm{r}=2439 \mathrm{~km}$.

Assume the magnetic dipole is perfectly aligned with the rotational axis of Mercury.
$\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$.
(a) Calculate the maximum and minimum magnetic field strength on Mercury.
(b) Compare these values to the maximum and minimum values on the Earth.

For the Earth $\mathrm{M}=7.94 \times 10^{22} \mathrm{Am}^{2}$ and $\mathrm{r}=6371 \mathrm{~km}$.
(c) Where will the maximum and minimum values of field strength occur on Mercury?

Question 2

A long iron cylinder is buried in the ice at the north magnetic pole, with it's axis horizontal. The total magnetic field (\mathbf{F}) is measured on a surface profile ($\mathrm{A}-\mathrm{A}^{\prime}$) that is at right angles to the axis of the cylinder.

(a) Suppose the cylinder has an induced magnetic moment. Sketch the variation in the magnitude of \mathbf{F} along the profile (A-A')
(b) Consider the case when the cylinder has no induced magnetic moment. However it has a strong remnant magnetic moment with \mathbf{M} horizontal and parallel to the profile. Sketch the variation in the magnitude of \mathbf{F} along the profile (A-A')

In each part, include a figure showing how you have added the magnetic field vectors at key points along the profile.

Question 3

(a) Explain the origin of seafloor magnetic anomalies formed at mid-ocean ridges.
(b) Draw a diagram to explain the polarity of the magnetic anomaly at a mid-ocean ridge.

Consider two cases (1) high magnitude latitude and (2) magnetic equator.

Question 4 Read Chapters 3 and Chapter 8 from the text book.

This assignment will be due in class on Tuesday December $2^{\text {rd }} 2008$
Office hours will be announced by e-mail.

