Geophysics 210 - 2008 Final exam - formula sheet

B : Gravity

Newtonian gravitation

Acceleration of gravity (g) due to a point mass (m) a distance (r) $g = \frac{Gm}{r^2}$

Gravity anomalies of sphere and cylinder a = radius of sphere or cylinder $\Delta \rho = \text{density contrast}$ z = depth of the sphere or cylinder $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$ x = horizontal distance from sphere/cylinder $= 10^{-5} \,\mathrm{ms}^{-2}$ 1 milligal $M_S =$ excess mass = half width *x*_{1/2} $g_z = \frac{2G\pi a^2 z \Delta \rho}{(x^2 + z^2)}$ Cylinder $X_{\frac{1}{2}} = Z$ $g_{z} = \frac{GM_{s}z}{\left(x^{2} + z^{2}\right)^{\frac{3}{2}}}$ $x_{\frac{1}{2}} = 0.766z$ Sphere

Free air correction

Change in g when elevation changes by $\Delta h(m)$

 $\Delta g_z = 0.3086 \Delta h \text{ (milligals)}$

Gravitational attraction of a layer / Bouguer correction

Gravitational attraction of slab with thickness Δz (*m*) and density contrast $\Delta \rho$ (kg m⁻³)

 $\Delta g_z = 2\pi G \Delta z \Delta \rho \ (ms^{-2})$

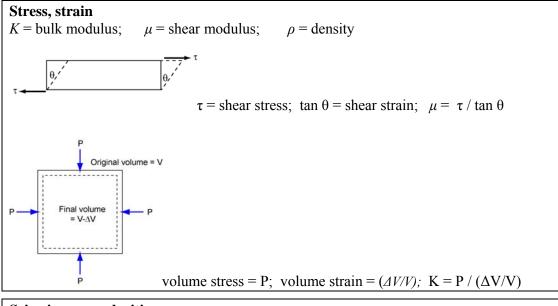
Solar system data	
Polar radius of the Earth	6356.7 km
Equatorial radius of the Earth	6378.1 km
Gravitational constant, G	$6.67 \ 10^{-11} \ \text{N} \ \text{m}^2 \ \text{kg}^{-2}$
Mass of Earth, M _E	$5.97 \ 10^{24} \ \text{kg}$
Mass of Moon, M _M	$7.36\ 10^{22}\ \text{kg}$
Mass of Sun, M _S	$1.99 \ 10^{30}$ kg
Earth-Moon distance	$3.84 \ 10^5 \ \mathrm{km}$
Earth-Sun distance	1.50 10 ⁸ km

Isostacy	
Airy hypothesis $\rho_c = crustal density$	$r = h \rho_c / (\rho_m - \rho_c)$ $\rho_m = mantle density$
r = root depth	h = mountain height

C: Seismology

v = velocity of seismic wave (m/s)t = travel time (s)x = source-receiver offset (m) $\rho =$ density (kg m⁻³)f = frequency of seismic wave (Hz) $\lambda =$ wavelength (m)v = x / tSeismic impedance , $Z = \rho v$ Seismic impedance , $Z = \rho v$ Seismic velocity, $v = f \lambda$

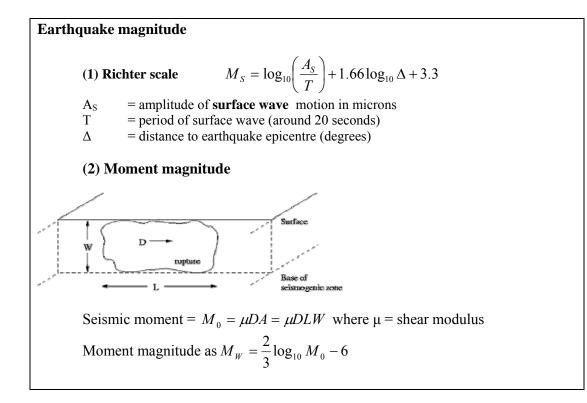
Reflection and refraction

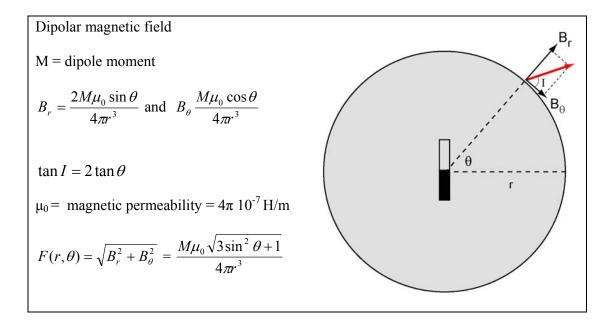

Seismic wave travelling from layer 1 to layer 2, at normal incidence Amplitude reflection coefficient, $R = \frac{Z_2 - Z_1}{Z_2 + Z_1}$

Amplitude transmission coefficient, T = $\frac{2Z_1}{Z_2 + Z_1}$

Snells Law

 $\frac{\sin\theta_i}{v_1} = \frac{\sin\theta_i}{v_2} = \frac{\sin\theta_r}{v_1}$


Seismic wave in layer 1 is incident on interface at angle θ_i Reflected at angle θ_r in layer 1; Transmitted at angle θ_i in layer 2


Seismic wave velocities

 $v_p = P$ -wave velocity $v_s = S$ -wave velocity

$$v_{P} = \left[\frac{K + \frac{4}{3}\mu}{\rho}\right]^{\frac{1}{2}} \qquad v_{S} = \left[\frac{\mu}{\rho}\right]^{\frac{1}{2}}$$

D: Geomagnetism

