Geophysics 223 Assignment 1 (2009)

Answering the following questions will require formulae from the notes
This assignment will be due in class on Wednesday January 282009

Question 1

Samples of copper and granite are being studied in the lab. Each sample is a cylinder that 10 cm long and has a radius of 1 cm . Copper has a resistivity $\rho=10^{-8} \Omega \mathrm{~m}$ and granite has a resistivity of $2000 \Omega \mathrm{~m}$
(a) What is the resistance of each cylinder to current flow along the cylinder?
(b) What voltage is required to make a current of 0.1 A flow along each cylinder?

Question 2

Consider the rock sample shown in the notes in B1.3.4
Assume that the cube of rock is 1 m long on each side.
Compute the resistivity of the cube to electric current flow that is (a) parallel and (b) perpendicular to the cracks.

Hint : Two resistors have resistances R_{1} and R_{2}
When combined in series, the total resistance is $R_{\text {ser }}$ where $\quad R_{\text {ser }}=R_{1}+R_{2}$
When combined in parallel, the total resistance is $R_{\text {par }}$ where $\quad 1 / R_{p a r}=1 / R_{1}+1 / R_{2}$

Question 3

A layer of sediments was found to have a bulk resistivity of $200 \Omega \mathrm{~m}$ and is completely saturated with pore fluid containing 20 g per litre TDS.

What range of porosities are predicted by Archie's Law?
How will your answer change if clay is present?

Question 4

Two electrode arrays are being used to measure the resistivity of the Earth (Wenner and dipole-dipole). The resistivity of the Earth is $100 \Omega \mathrm{~m}$ in the study area
(a) A current of $0.01 \mathrm{~A}(10$ milliamps) flows in the ground between the current electrodes. What voltage will be measured between the electrodes in each array?
(b) Sketch the pattern of electric current flow in each array.
(c) An accurate measurement requires that a voltage of 0.01 V is measured between the potential electrodes. What current is needed in each case to achieve this?

Question 5

The figure below shows 3 sets of 1-D resistivity models. Sketch the apparent resistivity that would be measured for each with a Wenner array. Be quantitative where possible.

Sketch you answers on this sheet.

All resistivity values are in ohm.m Name

