Geophysics 223 Assignment 4 : Ground penetrating radar

This assignment will be due on Thursday April 9th 2009

Question 1 - Travel time for a reflection

A GPR survey is used to measure the depth of an interface. TX-RX offset varies from 0 to 5 m in increments of 0.2 m

The velocity above the interface is $\mathrm{v}_{1}=0.1 \mathrm{~m} / \mathrm{ns}$ and below the velocity is $\mathrm{v}_{2}=0.2 \mathrm{~m} / \mathrm{ns}$. The interface is at a depth of 2 m .
(a) Use EXCEL to compute the travel time for the reflected wave. Also compute the travel time predicted by the NMO approximation.
(b) At what TX-RX offset is the error in the NMO approximation equal to 10% ?

Question 2 - Reflection coefficients

A radar survey takes place over a layered Earth shown below.

(a) Sketch ray paths for the first three reflections that will be recorded at normal incidence.
(b) Calculate the travel time for each reflection at normal incidence.
(c) The outgoing pulse has an amplitude $\mathrm{A}=1$. Calculate the amplitude of each reflection at normal incidence.

Question 3 - Analysis of a diffraction

The data above shows a diffraction from a metal pipe recorded during a GPR survey.
In this question we will use these data to determine the depth of the pipe (d) and the velocity of the soil $\left(v_{1}\right)$

Approximate solution for \mathbf{v}_{1} and d

First we will simplify the travel time by assuming that the TX and RX are coincident. In class we derived the travel time as

$$
t_{\text {diff }}=\frac{2 \sqrt{x^{2}+d^{2}}}{v_{1}}
$$

where d is the depth of the diffractor and x is the horizontal distance from the TXRX to the diffractor.
(a) At large values of x this equation becomes a straight line. Use the slope of this line to estimate v_{1}
(b) Measure the minimum travel time (conveniently marked with a ' + ' sign). Use this travel time to estimate the depth of the object.

Exact solution for $\mathbf{v}_{\mathbf{1}}$ and \mathbf{d}

Now we will use the more general result that the TX and RX are not coincident, but separated by a distance $t=0.8 \mathrm{~m}$.

It can be shown that in this case

$$
t_{\text {diff }}=\frac{\sqrt{\left(x-\frac{t}{2}\right)^{2}+d^{2}}+\sqrt{\left(x+\frac{t}{2}\right)^{2}+d^{2}}}{v_{1}}
$$

(c) Again consider the case that x is large and estimate v_{1} from the slope of the travel time curve.
(d) Consider the minimum travel time for the diffraction. Use this to estimate d.

Question 4 - Soil properties

(a) The ground wave in a GPR survey in a vineyard travels at $0.1 \mathrm{~m} / \mathrm{ns}$. Estimate the water content.
(b) A GPR survey is being used to map bedrock depth. Unfortunately, the bedrock is covered with a layer of clay with resistivity $5 \Omega \mathrm{~m}$. What is the maximum depth at which the basement can be detected with 50,100 and 500 MHz GPR data?

