function VLF_1 clear all; close all; %Top of conductor y1 = 0.; z1 = 45; %Bottom of conductor y2 = 0.; z2 = 95; w = 20.; % Primary magnetic field HYP = 1; quad_response=0.9 %Current flowing in conductor i1 =300; scale = 10.; scale_quad = 50.; rlim = 100; % Plotting paramters y_surface = [-400,400]; z_surface = [-5.,-5.]; y_conductor = [y1-w,y1+w,y2+w,y2-w,y1-w]; z_conductor = [z1,z1,z2,z2,z1]; % Array where magnetic fields will be computed y = [-300:20:300]; ny=length(y); z = [-100:20:30]; nz=length(z); limits =[-300,300,-100,100] % z is positive in the ground % Generate uniform primary field for iy=1:ny; for iz=1:nz; hyp(iy,iz)=1; hzp(iy,iz)=0.; end end % Generate secondary field (assume in phase) for iy=1:ny; for iz=1:nz; % Current at top of plate r1=sqrt((y(iy)-y1)^2+(z(iz)-z1)^2); hr1=i1/(2*pi*r1); % Current at top of plate r2=sqrt((y(iy)-y2)^2+(z(iz)-z2)^2); hr2=i1/(2*pi*r2); hys(iy,iz)= hr1*(z1-z(iz))/r1 -hr2*(z2-z(iz))/r2 ; hzs(iy,iz)=-hr1*(y1-y(iy))/r1 +hr2*(y2-y(iy))/r2 ; hms(iy,iz) = sqrt(hys(iy,iz)^2+hzs(iy,iz)^2); hys_quad(iy,iz)= quad_response*(hr1*(z1-z(iz))/r1 -hr2*(z2-z(iz))/r2) ; hzs_quad(iy,iz)= quad_response*(-hr1*(y1-y(iy))/r1 +hr2*(y2-y(iy))/r2) ; hm_quad(iy,iz) = sqrt(hys_quad(iy,iz)^2+hzs_quad(iy,iz)^2); hyt(iy,iz) = hys(iy,iz)+hyp(iy,iz); hzt(iy,iz) = hzs(iy,iz)+hzp(iy,iz); hmt(iy,iz) = sqrt(hyt(iy,iz)^2+hzt(iy,iz)^2); end end %============================================================= %Plot primary field %============================================================= figure(1); subplot(2,1,1) hold on fill(y_conductor,-z_conductor,'r'); for iy=1:ny; for iz=1:nz; y_plot = [y(iy),y(iy)+scale*hyp(iy,iz)];z_plot = -[z(iz),z(iz)+scale*hzp(iy,iz)]; plot(y_plot,z_plot,'k'); plot(y_plot(1),z_plot(1),'k.') end end plot(y_surface,z_surface,'k'); hold off xlabel('y(m)'); ylabel('z(m)'); title('VLF Primary magnetic field : In phase'); axis(limits) pause print (1,'-dpsc', 'VLF_1_inphase_primary.ps') %============================================================= % Plot secondary field %============================================================= figure(2); subplot(2,1,1) hold on fill(y_conductor,-z_conductor,'r'); for iy=1:ny; for iz=1:nz; y_plot = [y(iy),y(iy)+scale*hys(iy,iz)/hms(iy,iz)]; z_plot = -[z(iz),z(iz)+scale*hzs(iy,iz)/hms(iy,iz)]; plot(y_plot,z_plot,'k'); plot(y_plot(1),z_plot(1),'k.') end end plot(y_surface,z_surface,'k'); hold off xlabel('y(m)') ylabel('z(m)'); title('VLF Secondary magnetic field : In phase') axis(limits) pause print (2,'-dpsc', 'VLF_1_inphase_secondary.ps') %============================================================= % Plot in-phase total field %============================================================= figure(3); subplot(2,1,1) hold on fill(y_conductor,-z_conductor,'r'); for iy=1:ny; for iz=1:nz; %y_plot = [y(iy),y(iy)+scale*hyt(iy,iz)/hmt(iy,iz)]; %z_plot = -[z(iz),z(iz)+scale*hzt(iy,iz)/hmt(iy,iz)]; y_plot = [y(iy),y(iy)+scale*hyt(iy,iz)]; z_plot = -[z(iz),z(iz)+scale*hzt(iy,iz)]; plot(y_plot,z_plot,'k'); plot(y_plot(1),z_plot(1),'k.') end end plot(y_surface,z_surface,'k'); hold off xlabel('y(m)'); ylabel('z(m)') title('VLF Total magnetic field : In phase') axis(limits) print (3,'-dpsc', 'VLF_1_inphase_total.ps') pause %=============================================================== % Plot quad total field %=============================================================== figure(4); subplot(2,1,1) hold on fill(y_conductor,-z_conductor,'r'); for iy=1:ny; for iz=1:nz; %y_plot = [y(iy),y(iy)+scale*hys_quad(iy,iz)/hm_quad(iy,iz)]; %z_plot = -[z(iz),z(iz)+scale*hzs_quad(iy,iz)/hm_quad(iy,iz)]; y_plot = [y(iy),y(iy)+scale_quad*hys_quad(iy,iz)]; z_plot = -[z(iz),z(iz)+scale_quad*hzs_quad(iy,iz)]; plot(y_plot,z_plot,'r') ; plot(y_plot(1),z_plot(1),'k.') end end plot(y_surface,z_surface,'k'); hold off xlabel('y(m)'); ylabel('z(m)') title('VLF Total magnetic field : Quadrature') axis(limits) print (4,'-dpsc', 'VLF_1_quad_total.ps')