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ABSTRACT

We have devised a new filtering technique for random and
coherent noise attenuation in seismic data by applying empir-
ical mode decomposition �EMD� on constant-frequency slic-
es in the frequency-offset � f-x� domain and removing the first
intrinsic mode function. The motivation behind this develop-
ment is to overcome the potential low performance of f-x de-
convolution for signal-to-noise enhancement when process-
ing highly complex geologic sections, data acquired using ir-
regular trace spacing, and/or data contaminated with steeply
dipping coherent noise. The resulting f-x EMD method is
equivalent to an autoadaptive f-k filter with a frequency-de-
pendent, high-wavenumber cut filtering property. Removing
both random and steeply dipping coherent noise in either
prestack or stacked/migrated sections is useful and compares
well with other noise-reduction methods, such as f-x decon-
volution, median filtering, and local singular value decompo-
sition. In its simplest implementation, f-x EMD is parameter-
free and can be applied to entire data sets without user inter-
action.

INTRODUCTION

Spatial prediction filtering in the frequency-offset � f-x� domain is
n effective method for random noise attenuation. Originally pro-
osed by Canales �1984�, the idea exploits signal predictability in
he spatial direction. Noise-free events that are linear in the t-x do-

ain manifest themselves as a superposition of harmonics in the f-x
omain. These harmonics are perfectly predictable using an autore-
ressive �AR� filter. When the data are corrupted by random noise,
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he “signal” is considered to be the part that can be predicted by the
R filter and the “noise” is the rest.
In reality, seismic events do not follow Canales’s assumptions ex-

ctly. They are spatially nonstationary.3 Examples include a hyper-
olic moveout or a linear event with an amplitude that varies with
istance. The “signal” is no longer mapped to a superposition of sim-
le harmonics but rather a superposition of nonstationary ones.
ore distortion is added to Canales’s model when the seismic data

re sampled irregularly in the spatial direction. The use of a recur-
ion-type filter such as an AR filter is not necessarily optimal in this
ase because it implicitly assumes regular spacing.

Standard spatial filtering techniques such as f-x deconvolution
ope with nonlinearity and nonstationarity by filtering the data over
short spatial window in which the data are assumed to be piecewise
tationary and linear. This leaves the choice of finding optimal pa-
ameters for the window size and the filter length to the processing
pecialist. The selection of these parameters depends strongly on the
moothness of the data and should, in the optimum case, vary with
requency.

In this paper, we propose an alternative for seismic noise attenua-
ion in the f-x domain using a unique technique for time-frequency
nalysis. Empirical mode decomposition �EMD� was developed by
esearchers at NASA with the specific aim of analyzing nonlinear
nd nonstationary data �Huang et al., 1998�. Therefore, it constitutes
n interesting and unique domain to design data-adaptive filters for
he reduction of random and coherent noise.

We start this paper with a description of f-x deconvolution. Then,
e describe EMD and show how it can be used in the f-x domain for

oherent and random noise attenuation. Next, we compare its perfor-
ance with those of other noise-suppression techniques such as f-x

econvolution, local median filtering, and local singular-value de-
omposition �Bekara and van der Baan, 2007� on a variety of real
ata sets. We give a physical interpretation of the filtering properties
f f-x domain EMD and discuss its strengths and weaknesses com-
ared to the other methods.
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V90 Bekara and van der Baan
f-x DOMAIN FILTERING

ignal model

Consider a noise-free seismic section s�t,x� at time t and offset x.
or simplicity, assume the section contains a single linear event with
elocity V and constant amplitude so that

s�t,x��w�t�x/V�, �1�

here w�t� is the source wavelet. We denote its Fourier transform by
� f�. The f-x domain representation of s�t,x� is obtained by taking

he Fourier transform of each trace so that

S�f ,x��W�f�ei2� fx/V. �2�

We assume the trace spacing is regular, i.e., x�m�x, where m
1,2, . . . ,M, with M being the number of traces in the section. At

ach frequency f we consider the complex sequence

Sf�m��S�f ,m�x�, m�1,2, . . . ,M . �3�

It is easy to show that this sequence defines a linear recursion
long offset

Sf�m��a1�f�Sf�m�1�, m�2, �4�

here a1� f��exp�i2� f�x /V�. This recursion is a first-order differ-
ntial equation known also as an autoregressive �AR� model of order
and represents a single complex-valued harmonic.
A noise-free linear event in the t-x domain is therefore perfectly

redictable in the f-x domain by finding the recursion coefficient
1� f�. Similarly, it can be shown that the superposition of p linear
vents in the t-x domain is equivalent to the superposition of p com-
lex harmonics in the f-x domain; also, it can be predicted perfectly
y an AR filter of order p �Tufts and Kumaresan, 1980; Harris and
hite, 1997�.

inear prediction filtering using an AR model: f-x
econvolution

So far, the recursive equation has been derived to predict a noise-
ree superposition of harmonics. Additive noise corrupts the data in
ractice. Therefore,

Y f�m��Sf�m��� f�m�, �5�

here � f�m� represents a spatially varying complex noise sequence.
iltering is performed on the observed data Y f�m� to estimate the
oise-free signal Sf�m�. Canales �1984� argues a good estimate of
ignal Sf�m� is the predictable part of data Y f�m� obtained by an AR
odel. Consequently, the data Y f�m� are filtered using an AR filter
ith coefficients estimated directly from the data. This operation is

imilar to a deconvolution process and the standard name of this
echnique is f-x deconvolution.

In practice, f-x deconvolution is performed over a short sliding
indow in space and time to cope with the nonstationarity of the

eismic record and to reduce artifacts such as ghost events and high-
requency dispersion �Galbraith, 1991�. The AR model is fitted over
short spatial window and then used to predict one sample ahead.
he operation is repeated by sliding the window along the offsets
ne sample at a time. Prediction can either be done in a single direc-
ion, e.g., with increasing offset, or by averaging forward and back-
ard predictions thereby improving the filtering quality.
Downloaded 18 Aug 2009 to 129.128.162.85. Redistribution subject to
imitations of f-x deconvolution

Real seismic data often include events more complicated than the
asic model in equation 1. Examples include a parabolic event or a
inear event with amplitudes that vary with offset. The noise-free

odel, equation 4, is no longer a superposition of harmonics but
ather a superposition of nonstationary signals in the sense that the
oise-free model no longer has a sparse representation in a Fourier
asis.

More distortion is added to the noise-free model when the seismic
ata are not uniformly sampled in the spatial direction. This can be
ommon in land surveys. In this case, even for a linear event, the cor-
esponding f-x domain recursion defined in equation 4 loses its sim-
licity with coefficient a1 varying from trace to trace. This leads to
onstationary behavior of the AR filter if regular trace spacing is as-
umed.

Standard spatial filtering techniques such as f-x deconvolution
se short temporal and spatial analysis windows in which piecewise
inearity and stationarity are assumed. This is why f-x deconvolution
an fail to deliver satisfactory results when processing data acquired
ver complex geologies where signals are always nonstationary and
cquisition grids can be irregular. In addition, an ideal application of

f-x deconvolution would use a variable filter length that increases
ith frequency because low-frequency wavefields are less complex

nd easier to predict than high-frequency ones. This is done rarely in
ractice.

What alternative can be used forAR filtering in the f-x domain?A
onvenient solution consists of using an adaptive and nonlinear fil-
ering method that can handle nonstationarity and nonlinearity bet-
er. In addition, this method should be nonrecursive to make it less
ensitive to irregular sampling. A unique filtering method that satis-
es these requirements can be devised using EMD.

EMPIRICAL MODE DECOMPOSITION

ackground

Empirical mode decomposition decomposes a data series into a fi-
ite set of signals called intrinsic mode functions �IMFs�. They rep-
esent the different oscillations embedded in the data. They are con-
tructed to satisfy two conditions: �1� The number of extrema and the
umber of zero crossings must be equal or differ at most by one, and
2� at any point the mean value of the envelope defined by the local
axima and the envelope defined by the local minima must be zero.
These conditions are necessary to ensure that each IMF has a lo-

alized frequency content by preventing frequency spreading be-
ause of asymmetric waveforms. A Fourier transform decomposes a
ignal into a sum of single-frequency constant-amplitude harmon-
cs, whereas the IMFs are elementary amplitude/frequency-modu-
ated harmonics that can capture the nonstationary and nonlinear
ariations in the signal �Huang et al., 1998�.

The IMFs are computed iteratively starting with the most oscilla-
ory one. The decomposition method uses the envelopes defined by
he local maxima and the local minima of the data series. Once the
xtrema are identified, all the local maxima are interpolated by a cu-
ic spline to construct the upper envelope. The procedure is repeated
or local minima to produce the lower envelope.At every point in the
eries, the mean of the upper and lower envelopes is calculated and
ubtracted from the initial data and the same interpolation scheme is
 SEG license or copyright; see Terms of Use at http://segdl.org/



r
m
s

e
a
t

m
s
s
q
c
i
a
t
n

t
f
c
E
E
r
f
t

1
T
I
t
s
t
f
f
f

f

s
a
t
f
b
T
t

m
s

1
2

3
4

f
s
d
i
t
p

t
s

a

b

c

d

F
T
p
c
s
e
p
t

F
s
o
I
d
t
m
c
N

EMD noise attenuation V91
eiterated on the remainder. This sifting process terminates when the
ean envelope is reasonably close to zero everywhere and the re-

ultant signal is designated as the first IMF.
The first IMF is subtracted from the original signal and the differ-

nce is treated as a new signal on which the same sifting procedure is
pplied to obtain the next IMF. The decomposition is stopped when
he last IMF has a small amplitude or becomes monotonic.

Empirical mode decomposition has interesting properties that
ake it an attractive tool for signal analysis. It results in complete

ignal decomposition, i.e., the original signal is reconstructed by
umming all IMFs. No loss of information is incurred. The EMD is a
uasi-orthogonal decomposition in that the crosscorrelation coeffi-
ients between the different IMFs are always close to zero. This min-
mizes energy leakage between the IMFs. The EMD acts similarly to
dyadic filter bank �Flandrin et al., 2005�, i.e., the IMFs correspond

o the output of a time-varying subband filtering of the original sig-
al and have partially overlapping frequency contents.

Some important features distinguish EMD from other decomposi-
ion methods such as Fourier or wavelet transforms. The latter trans-
orms decompose the signal using a predefined basis �e.g., sines and
osines or a mother wavelet� whereas no a priori basis is used by
MD; the basis is derived adaptively from the data. Furthermore,
MD uses spline interpolations and is therefore less affected by ir-

egular sample spacing in contrast to Fourier and Wavelet trans-
orms, which require regular sampling for efficient implementa-
ions.

An example of applying EMD on a real signal is shown in Figure
. The original signal �Figure 1a� is nonstationary and oscillating.
he IMFs are derived iteratively starting with the fastest component,

MF 1, to the slowest one, IMF 7 �Figure 1b-h�. The IMF 1 captures
he highest-frequency oscillations in the data and the IMFs become
ubsequently smoother. The last IMF represents the general trend in
he data. The shapes of IMFs 2 and 3 suggest partially overlapping
requency contents although the common frequencies occur at dif-
erent times. Empirical mode decomposition is therefore different
rom simple band-pass filtering.
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igure 1. Empirical mode decomposition of a signal into IMFs. �a�
he signal exhibits clear nonstationary behavior. �b-h� The decom-
osition performed by EMD yields 7 IMFs here. The number of os-
illations decreases with increasing IMF number. �h� IMF 7 repre-
ents the trend in the data. Empirical mode decomposition is differ-
nt from simple band-pass filtering in that different IMFs can have
artially overlapping frequency content �e.g., IMFs 2 and 3�. Note
he vertical scales are not all the same.
Downloaded 18 Aug 2009 to 129.128.162.85. Redistribution subject to
-x domain EMD

How can EMD be used to remove seismic noise? For many data
ets, the random noise and any steeply dipping coherent noise make
significantly larger contribution to the high-wavenumber energy in

he f-x domain than any desired signal. The IMF 1 represents the
astest oscillations in the data, i.e., it contains the largest wavenum-
er components in a constant-frequency slice in the f-x domain.
herefore, signal-to-noise enhancement can be achieved by sub-

racting IMF 1 from the data.
To process a whole seismic section, f-x EMD filtering is imple-
ented in a similar way to f-x deconvolution using the following

cheme:

� Select a time window and transform the data to the f-x domain.
� For every frequency,

a� separate real and imaginary parts in the spatial sequence
b� compute IMF 1 for the real signal and subtract to obtain the

filtered real signal
c� repeat for the imaginary part

d� combine to create the filtered complex signal

� Transform data back to the t-x domain.
� Repeat for the next time window.

Unlike f-x deconvolution, which uses a fixed filter length for all
requencies, EMD adaptively matches its decomposition to the
moothness of the data. This offers the opportunity to implement a
ifferent filtering scheme for each frequency. It is worth emphasiz-
ng that removing only IMF 1 at each frequency is a single possibili-
y among many. This scheme is the simplest one and has led to good
erformance on nearly all data sets we have tested to date.

Figure 2 illustrates why such a scheme can be a viable alternative
o f-x deconvolution. It shows an example of applying EMD to a real
ignal. The data in Figure 1a represent the real part of a spatial se-
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igure 2. Comparison of EMD and AR filtering on the input signal
hown in Figure 1a. �a� AR order�2 and �d� its residual; �b� AR
rder�4 and �e� its residual; �c� EMD filtering by removing the first
MF and �f� its residual, i.e., the first IMF �Figure 1b�. A low AR or-
er reproduces most of the data trend yet some slow spatial varia-
ions remain visible in the residual plot. A higher AR order captures

ore signal variations. Empirical mode decomposition filtering re-
overs all low wavenumber variations and produces smooth output.
ote different vertical scales in the left and right columns.
 SEG license or copyright; see Terms of Use at http://segdl.org/
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V92 Bekara and van der Baan
uence in the f-x domain at f �42 Hz. We consider linear prediction
ltering using AR models of order 2 and 4, respectively, and com-
are this to the removal of the first IMF. Results of the different filter-
ng methods are shown in Figure 2.

A low AR order produces a smooth filter output and only recovers
he dominant spatial variations �Figure 2a�. Some coherent signals
ncluding low wavenumber components remain visible in the differ-
nce plot �i.e., data minus filtered signal� as shown in Figure 2d. In-
reasing the filter order copes well with the rapid variations in the
ata �Figure 2b� and produces a better prediction of the low wave-
umber trend and smoother residuals �Figure 2e�. Increasing the fil-
er order further would predict perfectly all variations in the data and
ery little filtering would be achieved.

The signal obtained by removing the first IMF from the original
ignal is displayed in Figure 2c. It captures all the low-wavenumber
ariations in the original signal. This signal could be obtained by
umming IMFs 2 to 7 in Figure 1. For completeness, IMF 1 is again
hown in Figure 2f. A comparison of the residuals in Figure 2d-f
hows the f-x EMD filter does not contain any low-wavenumber in-
ormation, and its residual is very localized without oversmoothing
he output. Similar results are obtained for the imaginary part.

REAL DATA APPLICATIONS

We compare the performance of f-x deconvolution and f-x EMD
or signal-to-noise enhancement on four real data sets resulting from
ll stages of the processing sequence. We also show the outcome of
wo noise attenuation methods based on local singular value decom-
osition and local median filtering �Bekara and van der Baan, 2007�.
ll f-x domain-filtering techniques use a short-time Fourier trans-

orm with a sliding temporal window of length 512 ms and an over-
ap of 50% to remove edge effects. Frequencies beyond 60% of the
yquist frequency are not processed and are damped to zero.

ata set 1: Shot gather

A shot gather is displayed in Figure 3a. The data contain interest-
ng features such as shallow backscattered energy �A�, a linear right-
ipping event �B�, ground roll �C�, nearly flat reflections �D�, and lin-
ar left-dipping events �E�. The primary objective in processing this
ather is to preserve the target reflections �D� and to attenuate all oth-
r coherent and random events. Frequency-offset deconvolution is
mplemented using anAR filter of length 4 designed using 20 spatial
amples to estimate the filter coefficients.

Frequency-offset deconvolution emphasizes the signal-to-noise
atio of all coherent events including the unwanted ones, such as the
eft-dipping events �E� and the ground roll �C� �Figure 3b�. The dif-
erence section for f-x deconvolution �Figure 3c� shows that the
ackscattered energy �A� and the right-dipping event �B� are re-
oved partially yet other events are emphasized �e.g., the ground

oll�. Frequency-offset deconvolution is capable of interpolat-
ng energy. This can be an advantage or a disadvantage depending
n the event considered. It is a clear advantage if we consider the tar-
et events �D� but a disadvantage if we consider the left-dipping
vents �E�.

Frequency-offset EMD emphasizes the signal-to-noise ratio of
he target reflections �D� and filters out the backscattered energy �A�
nd the ground roll �C� very effectively �Figure 3d�. It also removes
he right-dipping events �B� �Figure 3e�. Frequency-offset EMD has
Downloaded 18 Aug 2009 to 129.128.162.85. Redistribution subject to
ess interpolation power compared to f-x deconvolution. The EMD
s not a recursive spatial filtering method so no signal energy is
assed to the next sample.

Inspection of the difference sections �new minus old� shows that
f-x EMD performs much better than f-x deconvolution on this shot
ather. Frequency-offset deconvolution enhances the signal-to-
oise ratio of any coherent energy and is therefore less appropriate
or this data set. Changing its parameter settings does not lead to sig-
ificantly better results in this case.

We analyze the f-k spectra of the original and filtered data as
hown in Figure 4 to understand the filtering behavior of f-x EMD
etter. The wavenumber axis is normalized by the Nyquist value.
tandard f-k transforms implicitly assume the data are sampled reg-
larly both in time and space. This is not the case here �Figure 5�. The
race spacing of this shot gather is highly irregular and alternates be-
ween 5 and 7 m, leading to several aliasing artifacts visible in
igure 4a. For instance, the upside-down half-cones centered
t normalized wavenumber of �1 are artifacts caused by the irregu-
arity in the spatial sampling. They disappear if only regularly
paced traces are extracted. Despite these artifacts, the f-k spectra re-
eal many interesting features of f-x EMD versus f-x deconvolution
nd give a physical interpretation of its filtering behavior.

The ground roll �B� is aliased and mirrored spatially in �B1�. The
efraction �C� dominates the signal energy while the background
oise �D� is spread out over the high-frequency area of the spectrum.
he target reflections �E� are located around the zero wavenumber

they are predominantly horizontal in Figure 3�.
Frequency-offset deconvolution removes some of the back-

round noise �D� thereby enhancing the reflections �E� but leaving
he ground roll �B, B1� unaffected �Figure 4b�. Frequency-offset
MD, on the other hand, enhances the reflections �E� compared to

he background noise while largely attenuating the ground roll �B,
1�, its aliased energy �B1�, and the high-frequency components

typically above 60 Hz� of the refractions �C�.
Frequency-offset EMD acts as an adaptive high-cut wavenumber

lter in the f-k domain �Figure 4c�. At the lower-frequency end,
he ground roll has been removed. At the middle- to high-frequen-
y spectrum, all energy outside the normalized wavenumber ��1 /3,
/3� has been dampened leading to the automatic suppression of
ackground noise �D� and much of the aliased energy. The algorithm
etermines from the data what wavenumbers are to be suppressed as
function of frequency.
For completeness, we compare the performance of the f-x tech-

iques with two other methods for signal-to-noise enhancement,
amely local singular-value decomposition �SVD� and local median
ltering �Bekara and van der Baan, 2007�. Local methods imple-
ent dip steering over a sliding window of length 32 time samples,
idth 10 traces, and overlap of 50%. In local SVD, only one eigen-

mage is retained in the enhanced local window. The median filter is
et up in two sequential steps:Amedian filter of length 3 and then 5 is
pplied consecutively. The outcome is displayed in Figure 6.

Both local methods show a greater ability to suppress background
oise �i.e., noncoherent energy� as compared with the f-x tech-
iques. This is particularly true for local SVD �Figure 6a�. They are
lso able to partially suppress the backscattered energy �A�, the
ight-dipping event �D�, and the ground roll �C�. This is because of
he dip steering implemented in local methods which allows for dip
election. By restraining the maximum dip to be aligned, steeper
vents such as the ground roll or the backscattered events can be
liminated.
 SEG license or copyright; see Terms of Use at http://segdl.org/
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EMD noise attenuation V93
ata set 2: Common midpoint gathers

Next, we consider a second data set displayed in Figure 7. It con-
ists of two moveout-corrected common midpoint �CMP� gathers
hat contain a mixture of shallow horizontal events �before 2.5 s�
nd deeper hyperbolic events �strongest one at approximately 3.8 s�
uperposed with different quasilinear events, which are likely multi-
les. Frequency-offset deconvolution is implemented using an AR
lter of length 3 designed over 20 spatial samples.
Frequency-offset deconvolution �Figure 7b� boosts all the reflec-

ions including the multiples yet suppresses some of the background
oise as shown in the difference section �Figure 7c�. It also distorts
eflector amplitudes and removes some useful energy in the shallow
eflectors.
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igure 3. Data set 1: Shot gather. �a� Original data, �b� result of f-x
MD, and �e� associated difference section. The gather contains a var
vent, �C� ground roll, �D� reflections, and �E� linear left-dipping eve
ances all coherent energy, whereas f-x EMD removes most backgro
ipping events. Data courtesy of BP.
Downloaded 18 Aug 2009 to 129.128.162.85. Redistribution subject to
Frequency-offset EMD enhances the target reflectors, compared
o the background noise, and removes some of the multiples �Figure
d�. There is no noticeable amplitude distortion �Figure 7e�. The
ultiples are characterized by relatively high wavenumbers com-

ared to the other events and therefore have been removed.

ata set 3: Stacked section

Next, we consider a stacked section containing shallow horizontal
nd marginally dipping reflectors in the middle �Figure 8a�. Some
rossing artifacts are present in the bottom of the section, probably
esulting from previous data processing. We apply f-x EMD and f-x
econvolution with the same parameter values as for the previous
xample.
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V94 Bekara and van der Baan
Frequency-offset deconvolution attenuates some of the back-
round noise but leaves the crossing artifacts untouched �Figure 8b
nd c�. It also causes amplitude distortion by partially removing use-
ul reflector energy �particularly at 600 ms� as shown in the differ-
nce section �Figure 8c�. Frequency-offset EMD �Figure 8d� also at-
enuates some background noise but very little amplitude distortion
ccurs because no obvious reflector energy is visible in the differ-
nce section �Figure 8e�. More importantly, f-x EMD is able to re-
ove the crossing artifacts leading to a superior result over f-x de-

onvolution.

) b) c)

20 40 60 80 100 120 140

9

8

7

6

5

4

3

Trace number

T
ra

ce
sp

ac
in

g
(m

)

Downloaded 18 Aug 2009 to 129.128.162.85. Redistribution subject to
The effects of applying local SVD and median filtering on this
ata set are shown in Figure 7 of Bekara and van der Baan �2007�.
oth local techniques remove more of the random background noise

n the filtered output, yet they leave more crisscrossing events than
f-x EMD. For this particular data set, the local techniques are there-
ore better suited than f-x deconvolution because both random and
oherent noise is present. We ultimately prefer the result of f-x EMD
ecause it provides a better compromise between the reduction of
ackground noise and the removal of the crisscrossing artifacts.

Figure 4. F-k spectra related to data sections in Fig-
ure 3. �a� Data and results of �b� f-x deconvolution,
and �c� f-x EMD filtering. Frequency-offset decon-
volution �D� removes some of the background
noise, �E� enhances the reflections, and �B� slightly
attenuates the ground roll. Frequency-offset EMD
�B, B1� largely attenuates the ground roll and �C�
the high-frequency components of the refractions
�typically above 60 Hz� while �E� enhancing the
reflections. It also removes all the energy outside
the normalized wavenumber range ��1 /2,1 /2�.

180

Figure 5. Trace spacing in data set 1. The data set
has an irregular trace spacing that causes the arti-
factsAin the computation of the f-k spectra �Figure
4�.
160
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Figure 6. Alternative filtering results for data set 1 shown in Figure 3
using local SVD and local median filtering. �a� Local SVD and �b� its
difference section; �c� local median filtering and �d� its difference
section. Local SVD and local median filtering have the advantage
over f-x techniques in that they allow for dip selection because they
emphasize only those events that are aligned laterally.
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e) Figure 7. Data set 2: Two moveout-corrected CMP
gathers. �a� Original data, �b� result of f-x deconvo-
lution, �c� f-x deconvolution difference section, �d�
result of f-x EMD, and �e� associated difference
section. The CMP gathers contain a mixture of
shallow horizontal events and deeper hyperbolic
ones, superposed with different quasilinear events
that are probably multiples. Frequency-offset de-
convolution emphasizes all the reflections includ-
ing multiples. It suppresses not only some back-
ground noise but also some useful energy related to
the shallow reflectors. Frequency-offset EMD en-
hances the target reflectors and removes some of
the multiples in addition to the background noise.
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V96 Bekara and van der Baan
ata set 4: Migrated section

Finally, we consider a migrated section as shown in Figure 9a. It
isplays shallowly dipping reflections over an undulating interface.
gain, we apply f-x EMD and f-x deconvolution with the same pa-

ameter values as the last example. The results are displayed in Fig-
re 9b-e.

Frequency-offset EMD and f-x deconvolution have different
trengths and weaknesses in this example. Frequency-offset EMD
eems to remove more background noise and less of the shallowly
ipping events between 0.6 and 0.8 s than f-x deconvolution. On the
ther hand, f-x EMD removes the dipping part of the undulating in-
erface. Frequency-offset deconvolution, however, does not handle
he amplitude fluctuations along the horizontal reflectors as well.
his last shortcoming of f-x deconvolution is also noted in Bekara
nd van der Baan �2007�.

DISCUSSION

Applications of EMD in geophysics are few, even though it offers
any promising features for analyzing and processing geophysical

ata. It has been used for seismic attribute analysis �Magrin-Chag-
olleau and Baraniuk, 1999�, for the analysis of gravity data �Has-
an, 2005�, and recently as a tool to remove cable strum noise �Bat-
ista et al., 2007�. We demonstrate its capabilities as an alternative
echnique to f-x deconvolution for random and coherent noise atten-
ation.

Frequency-offset EMD acts as an adaptive soft high-wavenumber
ut filter. The cut-off wavenumbers are determined automatically
rom the data and vary as a function of frequency. For example, at
ower frequencies most ground roll in Figure 3 is removed whereas
t higher frequencies only refractions and background noise are
liminated �see also Figure 4�. This is an advantage over f-x decon-
olution, which uses in practice a single filter length for all frequen-
ies. This is not necessarily optimal because spatial signals at low
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requencies are less complex and easier to predict than their high-
requency counterparts.

Another advantage of f-x EMD over f-x deconvolution is trace
pacing need not be perfectly regular because no convolutional oper-
tors are used, as is the case for standard linear prediction filtering. It
hares this advantage with local SVD and local median filtering
Bekara and van der Baan, 2007�.

Frequency-offset EMD compares favorably with f-x deconvolu-
ion, local singular-value decomposition �SVD�, and local median
ltering as shown in Figures 3 and 6–9, and Figure 7 in Bekara and
an der Baan �2007�. Unlike the other approaches, f-x deconvolu-
ion can remove only random noise; however, it is very useful for
vent interpolation �i.e., reconstruction of missing energy�. Local
VD and local median filtering use dip steering, thus providing the
pportunity to attack dipping coherent noise just as f-x EMD does.

Frequency-offset EMD produces less amplitude distortion and re-
oves more background noise compared to f-x deconvolution as

hown in Figures 8 and 9. Unfortunately, not all steeply dipping en-
rgy is unwanted and removal of the first IMF in the f-x domain
ould eliminate desired reflections, such as the flanks in Figure 9.

Thus, f-x EMD has a tendency to remove the largest wavenum-
ers. Often these are associated with random or steeply dipping co-
erent noise. Sometimes, however, random noise levels are very low
nd f-x EMD might remove steeply dipping reflections �e.g., Figure
�. Empirical mode decomposition acts as a dyadic filter bank. For
hite signals with Gaussian density distribution, the first IMF is the
utput of a high-pass filter whose cut-off wavenumber is about half
he Nyquist value �Flandrin et al., 2005�. This explains why f-x
MD in the current implementation removes all energy outside the
ormalized wavenumber range ��1 /2,1 /2�, especially at high fre-
uencies. In most data sets tested to date, we only occasionally found
his to be an issue. We recommend routine inspection of difference
ections to determine if any useful signal had been removed. We an-
icipate this last weakness could be overcome by the proper selection

ion (m)

750 10001250

Figure 8. Data set 3: A stacked section. �a� Original
data, �b� result of f-x deconvolution, �c� f-x decon-
volution difference section, �d� result of f-x EMD,
and �e� associated difference section. Both f-x de-
convolution and f-x EMD reduce the background
noise but only f-x EMD removes the crisscrossing
artifacts. Frequency-offset deconvolution also re-
moves some reflection energy. Data courtesy of
Shell.
Posit
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EMD noise attenuation V97
f the IMFs to be removed or by injecting small amounts of noise
nto the data.

The f-x EMD results can be recreated by judicious tapering in the
f-k domain. The chosen f-x EMD approach is, however, automatic,
nd several weak noise types in the displayed data sets were detected
nly after the inspection of the obtained difference sections. Fre-
uency-offset EMD thus can be used not only for noise reduction but
lso for data analysis.

The performance of f-x EMD is sensitive to highly irregular ac-
uisition geometries with variable trace spacing and possibly large
aps. A detailed assessment is beyond the scope of this paper. The
MD is based on spline interpolation, thus greatly reducing the need

or regular sample intervals. The EMD performance is, however,
lso governed by the accuracy of extrema detection. This requires
hat all relevant wavelengths are sampled preferably by many points.
orrect identification of the extrema of the largest wavenumbers
ight thus require a fair amount of oversampling. See Rilling and
landrin �2009� for further details.
Eliminating only the first IMF in f-x EMD results in a fast pro-

essing algorithm with comparable computation cost to f-x decon-
olution. It also has the advantage that no parameter is given by the
rocessing analyst. This choice is known to be too simplistic for
ome data sets �e.g., Figure 9�. On the other hand, it has led to satis-
actory results in nearly all data sets considered to date. Other IMFs
ould better capture some coherent or noncoherent noise signals in
pecific situations. Case-dependent selection of useful IMFs will re-
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igure 9. Data set 4:Amigrated section. �a� Original data, �b� result o
c� f-x deconvolution difference section, �d� result of f-x EMD, and �
nce section. The data consist of shallow reflections over an undul
uency-offset EMD removes more background noise and does not
ipping events between 150 and 200 ms. However, it also removes
he undulating interface. Frequency-offset deconvolution shows the o
emoves less background noise and leaves the flanks intact but does n
ude fluctuations along the horizontal reflectors as well. Data courtes
Downloaded 18 Aug 2009 to 129.128.162.85. Redistribution subject to
ult in a more flexible processing scheme, which would open up new
venues for both data analysis and processing.

Finally, a 2D EMD implementation exists �Linderhed, 2002�. The
escribed method can therefore be extended to attenuate random and
oherent noise in 3D data by means of f-x-y EMD.

CONCLUSION

Frequency-offset EMD corresponds to an auto-adaptive wave-
umber filter that determines which wavenumbers are to be removed
rom the data for each individual frequency to attenuate both random
nd steeply dipping coherent noise.

Contrary to many alternative noise-reduction tools such as f-x de-
onvolution, f-x EMD invokes no piecewise-stationarity assump-
ion due to its origin as a time-frequency analysis tool. It can thus
vercome the potentially low performance of f-x deconvolution that
rises with processing structurally complex data or data contaminat-
d by coherent noise. It is also less sensitive to irregular spatial sam-
ling.

An interesting aspect of the EMD is that it is parameter-free in its
implest implementation in which only the first intrinsic mode func-
ion is removed. Other schemes are possible, adding flexibility at the
xpense of requiring interaction.
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