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igh-amplitude noise detection by the expectation-maximization
lgorithm with application to swell-noise attenuation
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ABSTRACT

High-amplitude noise is a common problem in seismic data.
Current filtering techniques that target this problem first detect
the location of the noise and then remove it by damping or inter-
polation. Detection is done conventionally by comparing indi-
vidual data amplitudes in a certain domain to a user-controlled
local threshold. In practice, the threshold is optimally tuned by
trial and error and is often changed to match the varying noise
power across the data set. We have developed an automatic meth-
od to compute the appropriate threshold for high-amplitude noise
detection and attenuation. The main idea is to exploit differences
in statistical properties between noise and signal amplitudes to
construct a detection criterion.Amodel that consists of a mixture
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f two statistical distributions, representing the signal and the
oise, is fitted to the data. Then it is used to estimate the probabil-
ty �i.e., likelihood� that each sample in the data is noisy by means
f an expectation-maximization �EM� algorithm. Only those
amples with a likelihood greater than a specific threshold are
onsidered to be noise. The resulting probability threshold is bet-
er adapted to the data compared to a conventional amplitude
hreshold. It offers the user, through the probability threshold val-
e, the possibility to quantify the confidence in whether a large
mplitude anomaly is considered as noise. The method is gener-
c; however, our work develops and implements the method for
well-noise attenuation. Initial results are encouraging, showing
lightly better performance than an optimized conventional
ethod but with much less parameter testing and variation.
INTRODUCTION

Seismic data are always corrupted with various types of noise that
educe data quality. Noise attenuation is therefore an important step
n seismic data processing to aid interpretation. Signal and noise can
e separated by means of model-based signal processing.

This approach assumes that signal and noise have different char-
cteristics that can be captured by a specific mathematical model.
he model can be based on a law in physics such as wave theory,
hich is used in many demultiple methods �Verschuur et al., 1992�.
lternatively, the model may exploit a deterministic feature such as
different trace moveout �dip� �Freire and Ulrych, 1988; Bekara and
an der Baan, 2007� or a statistical property such as independence to
ifferentiate signal and noise �van der Baan, 2006�.

We are concerned with the problem of high-amplitude noise atten-
ation. Consider a simple noise model where all data samples larger
han a certain threshold are likely to be noise. The threshold can be
pecified in many forms but is often formulated as a threshold factor
imes some data statistic such as the mean, the median, or the rms
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alue computed within the analysis window. The threshold factor
nd the data statistic are user-defined parameters. This model is in-
oked because of its simplicity �Anderson and McMechan, 1989;
ambois and Frelet, 1995; Elboth et al., 2008�. However, its main
isadvantage is the frequent change of the threshold value needed to
atch the variation of noise power across the data.
We propose an automatic threshold-determination technique for

etecting large-amplitude noise in a domain of choice. Attenuation
f swell noise in the frequency-offset � f-x� domain is developed as
n example, but the result can be generalized to other types of noise
uch as diffracted multiple noise and spikes �Liu et al., 2009�, where
arge-amplitude samples in a time or time-offset �t-x� window are
etected and then removed by interpolation. Our technique is tested
n real marine data; it shows better data adaptability than the con-
entional method.

First, we briefly review the problem of swell noise. Then, we out-
ine our new method for automatic threshold determination. Finally,
e show some real data examples.
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V40 Bekara and van der Baan
SWELL-NOISE ATTENUATION

Swell noise is caused by rough weather conditions and is a fre-
uent problem in acquiring marine seismic data. It has an adverse ef-
ect on seismic data quality and may even lead to temporary suspen-
ion of acquisition. It is characterized by large-amplitude and pre-
ominantly low-frequency content, as shown in Figure 1.

Elboth et al. �2009� discuss several possible mechanisms for
well-noise generation but conclude that for modern, foam-filled
treamers, the most likely causes are �1� hydrostatic-pressure fluctu-
tions resulting from vertical motion of the ocean because of strong
ea waves or �2� dynamic pressure variations along the surface of the
treamer that result from the presence of a turbulent layer surround-
ng the streamer.

Conventional techniques to attenuate swell noise first compute
he f-x amplitude or power spectrum of the data within a sliding win-
ow. All spectral values at a given frequency within the window that
xceed some threshold are considered noise. These noisy samples
re then attenuated �Elboth et al., 2008� or interpolated �Soubaras,
995; Schonewille et al., 2008�.Athreshold value must, however, be
efined in this process.

For a given frequency f , we define Sn� �r1,r2, . . . ,rn� with rk

�Dk� f��2, where Dk� f� is the Fourier transform of the kth trace in
he data window. Thus, Sn represents power-spectrum values of a set
f traces at a given frequency. The threshold value is usually com-
uted as

threshold�� ŝ�Sn�, �1�

here ŝ�Sn� is a statistical measure computed from the samples in Sn

nd � is a positive factor, referred to as the threshold factor. The
hreshold value represents an upper bound on the possible values of
he signal amplitudes. Therefore, any amplitude above it is consid-
red to be genuine noise.

The statistical measure ŝ�Sn� can be the median, the mean, the rms
alue, or any percentile of the set Sn. The selection of an appropriate
tatistical measure depends on the distribution of the samples in Sn.
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igure 1. A marine seismic gather, showing clear swell-noise con-
amination �vertical stripes�. Data courtesy of Fugro.
Downloaded 26 May 2010 to 142.244.164.161. Redistribution subject to
he mean and the rms value can be biased by large noise amplitudes,
o the median is often used for its robustness to extreme values. The
arameter � controls the strength of the threshold level and is adjust-
d by the processing specialist to obtain the best results.

Despite the fact that the threshold value in equation 1 is adapted to
he data through the statistical measure ŝ�Sn�, practical experience
hows that � is frequently updated if the noise power varies consid-
rably across the entire data set.

THEORY

This section describes an automatic method to determine the ap-
ropriate threshold by considering the problem of outliers detection.

utliers detection

Consider a data set Sn� �r1,r2, . . . ,rn�, where the samples rk are as-
umed independent and identically distributed �iid�, generated from
probability density function �PDF� g�r�. Finding abnormal sam-
les in set Sn is known in applied statistics as outliers detection
Rousseeuw and Leroy, 1987�. The objective is to find those samples
hat show different statistical properties from the rest of the data
known as regulars�. In our problem, the outliers �noise�signal�
ave larger amplitudes than the regular data �signal only�. Therefore,
he population of outliers differs from that of regular data in terms of
ome distinguishing statistical measures that can be captured by us-
ng a mixture of PDF modeling.

For notation, the PDF of the outliers is denoted by p�r �� 1� and the
DF of the regular data is denoted by p�r �� 0�. It is assumed for sim-
licity that both distributions belong to the same family of paramet-
ic PDFs but have different parameter values, i.e., � 1�� 0. Let the
calar � represent the fraction of outliers in set Sn. This parameter has
he statistical meaning of being the a priori probability �i.e., predata

odeling� that a sample ri drawn randomly from Sn is an outlier. The
ata PDF is now structured as a mixture of two models:

g�r�� 0,� 1,� ��� p�r�� 1�� �1�� �p�r�� 0� . �2�

One can estimate from Sn all parameters of the model defined in
quation 2. Once the estimate is completed, the a posteriori probabil-
ty �i.e., postdata modeling� that a given sample r�ri is an outlier
an be computed using Bayes’ rule. In Bayes’ rule, A and B are two
vents and P�A �B� is the probability of event A happening, given
hat event B has happened. It expresses the conditional likelihood of
he two events, such as P�A �B�P�B�� P�B �A�P�A� �Papoulis and
illai, 2002�. Here,

Pr�r is outlier�r�ri��
� p�ri�� 1�

� p�ri�� 1�� �1�� �p�ri�� 0�
.

�3�

he datum ri is considered to be an outlier if its a posteriori probabil-
ty is greater than a probability threshold value � , i.e.,

Pr�r is outlier�r�ri��� with
1

2
�� �1. �4�

s an example, for � �0.5, expression 4 means that an outlier is se-
ected only if the model is at least 50% sure that it is an outlier. The
hoice of a probability threshold � in equation 4 is much more ob-
ective than an arbitrary threshold factor � in equation 1 and reflects
 SEG license or copyright; see Terms of Use at http://segdl.org/
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High-amplitude noise attenuation V41
he statistical confidence we may require to classify any datum as an
utlier.

roposed threshold computation

When computing a threshold, three steps are involved: choosing a
DF, identifying the algorithm, and interpreting the results.

hoice of PDF

A parametric form for p�r �� � in equation 2 needs to be chosen in
rder to use the detection criterion given by equation 3. The form of
�r �� � should provide different decay rates when r increases. This is
equired to guarantee that the likelihood of large-amplitude values is
reater in the population of outliers compared to that in the popula-
ion of regular data. Using the approximation that the real and imagi-
ary parts of a Fourier transform are asymptotically independent ze-
o-mean Gaussian random variables with equal variance �Kay,
988�, one can show that the PDF of the power spectrum samples has
n exponential form �Appendix A�.

The exponential distribution has one parameter, � ��, which is
he mean of the distribution �Papoulis and Pillai 2002, their section
.5�:

p�r������1 exp��r

�
�, with r	0. �5�

he model in equation 2 then becomes

g�r��0,�1,� ��
1��

�0
exp��r

�0
��

�

�1
exp��r

�1
�, �6�

ith �1 � �0 to reflect the fact that large amplitudes are more likely
o be generated by the distribution of outliers.

At this point, one might question the goodness of fit of the model
n equation 6 before using it to draw inferences. The answer to this
uestion is nontrivial because it requires a statistical testing of the
ull hypothesis: data follow the model in equation 6. Mathematical
odels help us understand and describe the real world, and it is gen-

rally accepted that the true data-generating model is much more
omplex than any possible hypothetical model. Therefore, the issue
f model correctness is not formally addressed, but a model-sensi-
ivity test is discussed later in this paper.

etection algorithm

The model in equation 6 has three unknown parameters ��0,�1,� �,
hich are to be estimated from Sn. We propose to use the maximum

ikelihood estimator �MLE�, for its desirable statistical properties
uch as consistency and efficiency, in the following optimization
roblem:

��̂0,�̂1,�̂ ��arg max
�0,�1,�

�
i�1

n

g�ri��0,�1,� � . �7�

here is no closed-form solution to this problem, so the parameter
alues are estimated using an iterative procedure proposed by Has-
elblad �1969�. This procedure belongs to a class of techniques
nown as the expectation-maximization �EM� algorithms, which are
sed to find the MLE of a model’s parameter when data are missing
r incomplete �Dempster et al., 1977�. The iterative EM algorithm is
iven by the following steps:
Downloaded 26 May 2010 to 142.244.164.161. Redistribution subject to
� Set initial values for the parameters �0
�0�, �1

�0�, � �0�.
� Update the parameters such that

� �t�1��
1

n
	
i�1

n

Ai
�t�, �8�

�1
�t�1��

	
i�1

n

Ai
�t�ri

	
i�1

n

Ai
�t�

, �9�

and

�0
�t�1��

	
i�1

n

�1�Ai
�t��ri

	
i�1

n

�1�Ai
�t��

, �10�

where

Ai
�t��

p�ri��1
�t��� �t�

p�ri��1
�t��� �t��p�ri��0

�t���1�� �t��
. �11�

Detailed derivation is presented in Appendix B. Convergence
of the EM algorithm is quick in this particular application and
is, to a large extent, independent of the initial conditions. The
initial conditions are set such that � �0��0.1, �1

�0� equals the
mean of the 
� �0�n� largest amplitudes and �0

�0� equals the mean
of the rest of the data.

Combining equations 3, 4, and 6 while replacing the unknown pa-
ameters �0, �1, and � with their estimates ��̂0, �̂1, and �̂ � leads to an
mplitude-based threshold detection criterion. An amplitude r is an
utlier with probability � if r � rexp, where exp stands for exponent
n the expression

rexp�
�̂1

�̂1

�̂0

�1

�log�1� �̂

�̂
�� log� �

1��
�� log� �̂1

�̂0

�
 .

�12�

nterpretation

The value Ai
�t� in equation 11 is the a posteriori probability that the

ample ri is an outlier, computed at each iteration. It is used to weight
he contribution of ri toward the mean of outliers. Likewise, �1

Ai
�t�� is the a posteriori probability that the sample ri is a signal; it is

sed to weight the contribution of ri toward the signal’s mean. There-
ore, one can view the EM algorithm in equations 8–11 as an itera-
ive method to compute the signal mean, where the effect of noisy
mplitudes is scaled down before the mean is computed.

The proposed threshold in equation 12 jointly takes into account
he statistics of the data �through the estimates of the model’s param-
ters in equation 6� and the user’s confidence requirement through
he value of � . The user’s influence on the threshold is minimal
 SEG license or copyright; see Terms of Use at http://segdl.org/
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V42 Bekara and van der Baan
hen log�� / �1�� ���0, i.e.. � �0.5. This is consistent with the
act that for any binary decision to be made, a probability of 0.5 for
ach outcome represents the uninformative case in the sense that the
priori knowledge of this probability would not affect the decision.
herefore, a value of � �0.5 would be a preferable default for the
roposed probability threshold.

Analysis of the new threshold criterion defined in equation 12 re-
eals several points. First, when the user increases the value of � , the
tatistical confidence required to accept outliers increases, conse-
uently increasing the threshold level. Therefore, � has a similar
ole to the threshold factor � for the conventional method. Second,
nder the statistical model, small values of �̂ imply the existence of
ew outliers, and the threshold level increases to reflect that. On the
ther hand, when �̂ →1, the model infers that most of the data are
utliers and the threshold level decreases as a consequence. Finally,
hen �̂0 � �̂1, the assumption of a mixture of two models in equation
is not empirically supported by the data. Only a single population

xists; therefore, the value of �̂ has no statistical meaning. In this sit-
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igure 2. A small data window extracted from Figure 1. �a� Refract-
d arrivals mixed with swell noise. �b� Its average power spectrum
hows that swell noise is concentrated in the frequency band be-
ween 2 and 15 Hz.
Downloaded 26 May 2010 to 142.244.164.161. Redistribution subject to
ation, we assume that the data are composed of regular samples
nly because the case of outlier-only samples is excluded. The
hreshold is automatically set to a large value, and therefore no outli-
r is selected.

To study the sensitivity of the proposed technique to the chosen
tatistical model, we consider also using a Rayleigh distribution in-
tead of the exponential one in the data modeling. Derivation of the
etection criterion is presented inAppendix C.

utlier attenuation

Once the noisy amplitudes are identified by means of the thresh-
ld criterion in equation 12 �for the exponential model� or in equa-
ion C-2 �for the Rayleigh model�, they can be removed from Sn �e.g.,
y setting ri�0� or interpolated from neighboring samples
Soubaras, 1995�. However, we choose a more conservative option
y rescaling the noisy samples with a constant factor such that �1� the
ew mean of the noisy samples is equal to the mean of the regular
ata for the exponential model and �2� the new rms value of the noisy
amples is equal to the rms value of the regular data for the Rayleigh
odel.

DATA EXAMPLE

This section contains a series of test examples using our proposed
hreshold with the exponential model. At the end, a comparative test
etween the exponential and the Rayleigh model is performed to in-
estigate the sensitivity of the statistical approach to the choice of
DF used in the modeling.

hreshold computation

Consider the data window displayed in Figure 2a, which is ex-
racted from the marine shot gather in Figure 1. This window con-
ists of 50 traces that extend over a 512-ms time gate �128 time sam-
les�. Swell noise is visible from traces 370–380 and from trace 410
o the end of the window. The swell noise is localized in the frequen-
y from 2 to 15 Hz with a peak near 4 Hz �Figure 2b�. This data
indow is a good example of a typical noise-detection scenario be-

ause good-quality signal �albeit refractions and near-surface rever-
erations� is mixed in high-amplitude swell noise.
Our proposed detection criterion is applied to two spatial se-

uences �i.e., constant-frequency slices� obtained from the data in
igure 2a after transformation to the f-x domain. The first sequence

s taken at frequency f �4 Hz �strong swell noise�; the second se-
uence is taken at f �20 Hz �no swell noise�. The case of no swell
oise is considered to investigate whether our method preserves sig-
al when no noise is present.

Figure 3a shows the power spectral values of each trace at f
4Hz and the estimated threshold level rexp given by expression 12.

igure 3b displays the corresponding noise probability �expression
� with probability threshold � �0.5. Large probabilities ��0.95�
ccur at trace numbers where swell noise has been identified visually
Figure 2a�. Note the improved detection of swell noise at traces
77–380; their amplitudes are relatively low, but the computed noise
robability is large.

The histogram of the data in Figure 3a is plotted with the estimat-
d mixture of exponential densities �equation 6� and is shown in Fig-
re 4a. The fitting is not globally perfect but is reasonably good for
he low amplitudes �mainly signal�. The EM algorithm �equations
 SEG license or copyright; see Terms of Use at http://segdl.org/
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High-amplitude noise attenuation V43
–11� converges quickly, as shown in Figure 4b and c; one can con-
lude the existence of two populations in the data ��̂1� �̂0�.

Likewise, Figure 5a shows the spectral power values of each trace
t f �20 Hz, along with the estimated threshold value.Alogarithmic
cale is used for the spectral power axis to allow plotting the large
hreshold along with the observed spectral power values. Unsurpris-
ngly, the computed probabilities of the presence of swell noise are
ow, approximately 0.08 �Figure 5b�. This is consistent with the fact
hat at f �20 Hz, the swell noise is weak to absent �Figure 2a�. The
se of a more conventional thresholding scheme such as in equation
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igure 3. Swell noise detected at f �4 Hz for the data window in
igure 2. �a� Power spectrum values �solid� and the proposed thresh-
ld �dashed�. �b� Noise probability �solid� and the probability thresh-
ld � used in the detection �dashed�. Notice the improved detection
f swell noise at traces 377–380; their amplitudes are relatively low,
ut the computed noise probability is large.
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igure 4. �a� Histogram of the data in Figure 3a, plotted with the esti-
ated mixture of exponential distributions. Evaluation of the esti-
ated parameters through the iterations of the EM algorithm: �b�

raction of outlier �̂ ; �c� mean power �̂1 �dashed� and �̂0 �solid�. One
an conclude the existence of two populations in the data ��̂ � �̂ �.
1 0

Downloaded 26 May 2010 to 142.244.164.161. Redistribution subject to
bears the risk that some of the largest power-spectrum values at f
20 Hz could be mistakenly identified as noise if � is set too low.
To see why our method preserves the spectral amplitudes at f
20 Hz, we examine the values of the model parameters ��̂0, �̂1, �̂ �

hroughout the iterations, as computed by the EM algorithm and
hown in Figure 6b and c. The relative portion of outliers �̂ quickly
ecreases to 0.08 �Figure 6b�, and the respective mean values for the
egulars �̂0 and outliers �̂1 converge to the same numerical values
Figure 6c�. The statistical model concludes that all data at this fre-
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igure 5. Swell noise detected at f �20 Hz for the data window in
igure 2. �a� Power-spectrum values �solid� and the estimated

hreshold value �dashed�. �b� Noise probability �solid� and the prob-
bility threshold � used in detection �dashed�. Note a logarithmic
cale is used in �a�. The statistical model in equation 6 gives no em-
irical evidence supporting the presence of swell noise at this fre-
uency. All computed probabilities are well below the probability
hreshold � �0.5.
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igure 6. �a� Histogram of the data in Figure 5a plotted with the esti-
ated mixture of exponential distributions. Evaluation of the esti-
ated parameters through the iterations EM algorithm: �b� fraction

f outlier � ; �c� mean power �̂1 �dashed� and �̂0 �solid�. The relative
ortion of outliers �̂ converges to 0.08, and the population means �̂0

nd �̂1 converge to identical values, indicating that the data likely
onsist only of a single population without noise contamination.
 SEG license or copyright; see Terms of Use at http://segdl.org/
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V44 Bekara and van der Baan
uency result from a single distribution �signal only� instead of a
ouble population �signal and noise�. As a result, no samples are
lassed as swell noise. The estimated mixture of the exponential dis-
ribution model does not fit the data’s histogram �Figure 6a�, a clear
ndication of model misspecification. We argue, based on other tests,
hat when a misfit is significant, the estimated model parameters are
uch that �̂0 � �̂1. This means no data will be classified as noisy, mak-
ng the technique safer.

well-noise attenuation in individual windows

The threshold criterion in equation 12 is implemented in combi-
ation with the outlier rescaling methodology, mentioned earlier, to
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igure 7. Swell-noise filtering applied to the data in Figure 2. �Left
olumn� Result after swell-noise attenuation. �Right column� Differ-
nce section. �a, b� Conventional method with � �3 �mild filter�; �c,
� conventional method with � �1 �harsh filter�; and �e, f� proposed
ethod with � �0.5. The mild filter preserves the refracted arrivals

etter but attenuates swell noise less well than the harsh filter. The
roposed method is similar to the mild filter.
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ttenuate swell noise in the shot domain. Tests are done on two dif-
erent data windows �shallow and deep� extracted from Figure 1. For
omparison, we use the conventional detection criterion in equation
, with the median as the statistical measure. Detected noisy samples
re then scaled down to the threshold level � ŝ�Sn�. Two different val-
es for � are used to test, respectively, a mild and a harsh noise filter.
ur approach is implemented with a fixed value of � �0.5.
The first data window is shown in Figure 2a. This shallow, far-off-

et window includes refracted arrivals and swell noise. A mild noise
lter �� �3� preserves the signal, but it also attenuates less swell
oise �Figure 7a and b�. On the other hand, a harsh noise filter ��

1� distorts the refracted arrivals but attenuates much of the swell
oise �Figure 7c and d�. The proposed method �Figure 7e and f�
chieves results similar to the conventional mild filter.

The second data window is extracted from a deep, near-offset sec-
ion, as shown in Figure 8 along with its average power spectrum.An
ggressive noise filter with � �1 �Figure 9c and d� provides better
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igure 8. A small data window extracted from Figure 1. �a� The data
indow contains some weak flat multiples mixed with strong swell
oise. �b� The average power spectrum of the data shows that swell
oise is concentrated in the frequency band from 2 to 15 Hz.
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esults compared to a more conservative one with � �2 �Figure 9a
nd b�. The proposed method shown in Figure 9e and f performs sim-
larly to the aggressive filter.

These tests demonstrate that � in the conventional method may
eed to be adjusted in different parts of a single gather to obtain opti-
um results, e.g., if the noise characteristics are nonstationary in

ime and position. Our statistical method automatically achieves a
ore satisfactory balance between noise attenuation and signal pres-

rvation for a single parameter choice.
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igure 9. Swell-noise filtering applied to the data in Figure 8. �Left
olumn� Result after swell-noise attenuation. �Right column� Differ-
nce section. �a, b� Conventional method with � �3 �mild filter�, �c,
� conventional method with � �1 �harsh filter�, and �e, f� proposed
ethod with � �0.5.Aharsh filter �c, d� provides better results than
mild filter �a, b�. The proposed method performs similarly to the
arsh filter.
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hole section

We apply both detection techniques on the whole section shown in
igure 1. The methods are implemented over a sliding time-space
indow of 512 ms in length and 50 traces with a 50% overlap in time

nd space. The conventional method is implemented with a variable
hreshold factor: from time t of 0–2.80 s, � �3.0; t of 2.80–4.00 s,
�2.0; t of 4.00–4.64 s, � �1.2; and t of 4.64–8.20 s, � �1.0.
his thresholding scheme with a decreasing factor � provides the
est performance for this gather. On the other hand, our method uses
fixed value � �0.5 throughout.
The filtering result of the conventional method �Figure 10a�

hows that a large amount of swell noise has been removed; howev-
r, some weak components of the refracted arrivals have been atten-
ated around traces 100 and 400 �Figure 10b�. The proposed tech-
ique is slightly better, particularly at traces 80–95 and 250–350
Figure 10c�. The seabed event is also slightly better preserved �Fig-
re 10d�. More importantly, the statistical method needs no parame-
er testing and optimization, unlike the conventional method.

The result of using the Rayleigh distribution �Appendix C� is
ompared with the result obtained previously using the exponential

Trace number
T

im
e

(s
)

0 100 200 300 400
0

2

4

6

8

Trace number
0 100 200 300 400

0

2

4

6

8

)

b)

T
im

e
(s

)

0 100 200 300 400
0

2

4

6

8

0 100 200 300 400
0

2

4

6

8

c)

d)

igure 10. Comparison between the result of �a, b� an optimized con-
entional method and �c, d� the proposed method for swell-noise at-
enuation applied on the whole gather in Figure 1. �Top row� Output
fter swell-noise attenuation. �Bottom row� Difference section. The
onventional method was implemented with a time-varying thresh-
ld factor � and the proposed method with a constant � �0.5
hroughout the section. The proposed method gives results compara-
le to the optimized conventional method �though it is slightly better
t traces 80–95 and 250–350� but with much less parameter testing
nd variation.
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istribution �Figure 11�. Both results clearly are close, indicating a
elatively weak sensitivity to the choice of PDF used in the model-
ng.

DISCUSSION

Model-based signal processing is a powerful tool to extract signal
rom noisy observations. The example of using a two-class mixture
f PDFs to model the amplitudes of the data demonstrates that a sta-
istical parametric approach may provide better results than a con-
entional nonparametric approach. The statistical approach leads to
n adaptive noise detector applicable across a wider range of varying
oise power.

The performance of model-based signal processing depends on
he appropriateness of the chosen model. The goodness of fit of Sn to
he mixture of exponential model in equation 6 is not assessed be-
ause it is beyond the scope of this paper. However, in our experi-
nce when the misfit is significant, the estimated model parameters
re such that �̂0 � �̂1. As a result, no data are classified as noise and
he technique is quite safe, even when the underlying statistical as-
umptions are violated.

The sensitivity of our method to the choice of the statistical distri-
ution has been investigated by considering a Rayleigh distribution
n addition to the exponential distribution. The result shows a rela-
ively weak sensitivity, but generalization to other distributions is
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igure 11. Sensitivity of the proposed method to the choice of the
tatistical distribution. Comparison between �a, b� a Rayleigh PDF
nd �c, d� an exponential PDF for swell-noise attenuation applied on
he whole gather in Figure 1. �Top row� Output after swell-noise at-
enuation. �Bottom row� Difference section. Results are similar, sug-
esting little sensitivity to assumed PDF.
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et to be tested. We claim, however, that for data classification, the
nowledge of specific statistical moments is enough to make a reli-
ble decision as long as the statistical moments can be considered as
eliable discriminators. �The statistical moment of order s for the
DF p�x� is defied as ms��xsp�x�dx.� The fact that swell-noise am-
litudes are larger than signal amplitudes implies that possible dis-
riminating statistical moments include the mean �first-order mo-
ent� and the rms value �square root of the second-order moment�.
ence, if a PDF can capture a discriminating statistical moment

hrough its parameters, then we would expect the result of the detec-
ion to be comparable to the one obtained with the exponential or the
ayleigh distribution.
The assumption of independent and identically distributed sam-

ling used in the statistical model �equation 2� is not totally correct
or the signal amplitudes. It also is not correct for the noise ampli-
udes because swell noise contaminates a set of neighboring traces at
nce in the shot domain. This assumption is used to simplify the
athematical formulation of the problem but may result in a lower

etection performance. The conventional noise-detection method in
quation 1 assumes implicitly an iid model because the statistic ŝ�Sn�
oes not depend on any data-correlation measure. If we consider a
andom reordering of the data in Sn, then a pseudo-iid model can be
chieved by removing possible correlation between the samples
ithout affecting ŝ�Sn�. The proposed method is also invariant under

andom data reordering.
Reducing the number of samples n used to fit the statistical model

ffects the quality of parameter estimation and hence reduces the ef-
ectiveness of noise detection. This issue is shared with the conven-
ional method; the quality of the estimated data statistics ŝ�Sn� in
quation 1 also depends on n. But because ŝ�Sn� involves estimating
nly one unknown, compared with fitting the parametric model in
quation 6 with three unknowns, conventional methods are expected
o suffer less when n is small. Therefore, when applying the pro-
osed method on a short spatial window �e.g., 10 traces�, one should
onsider analyzing a packet of frequencies at a time rather than a sin-
le frequency.

We anticipate that better swell-noise attenuation results could be
btained if noisy samples were interpolated rather than just rescaled.
owever, the focus of this paper is on the detection of noisy samples,
hich is a prerequisite of any target-oriented interpolation scheme.
urthermore, the described rescaling can provide an initial estimate
or any f-x interpolation based on autoregressive modeling
Canales, 1984; Soubaras, 1995�.

CONCLUSION

Automatic detection of large, noisy amplitudes can be achieved
sing statistical modeling. The resulting statistical detection method
s equivalent to an optimized conventional one but with much less
arameter testing and variation. Tests on swell-noise attenuation
how consistent results for a wide range of varying noise levels
cross the data. The method is generic and can be generalized to oth-
r types of anomalous high-amplitude noise such as spikes and dif-
raction multiples noise.
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APPENDIX A

DISTRIBUTION OF POWER SPECTRUM

Let X1 and X2 be two independent zero-mean Gaussian random
ariables with equal variance 
 2. We are interested in finding the
DF of the random variable Z�X1

2�X2
2. For the problem consid-

red in this paper, X1 and X2 represent the real part and imaginary part
f the Fourier transform and Z is the power spectrum. The cumula-
ive density function is defined as

F�z��Pr�Z�z��Pr�X1
2�X2

2�z�

���
x1

2�x2
2�z

�2�
 2��1 exp��
x1

2�x2
2

2
 2 �dx1dx2.

�A-1�

y changing the variables x1�r cos�� � and x2�r sin�� �, the dou-
le integral in equation A-1 can be rewritten as

F�z���
0

2��
0

�z

�2�
 2��1r exp��r2

2
 2�drd�

�1�exp� �z

2
 2� . �A-2�

he PDF of Z, p�z��dF�z� /dz� �2
 2��1 exp��z /2
 2�, is an ex-
onential distribution with a location parameter ��2
 2.

APPENDIX B

EXPECTATION-MAXIMIZATION ALGORITHM

The EM algorithm is used to find the MLEs of parameters in a sta-
istical model, where the model depends on some unobserved or

issing variables. Given a statistical model defined by its PDF,
�D,Z;��, where D is the observed data, Z is the unobserved or
issing data, and � is the vector of parameters, the MLE is defined

y the marginal likelihood of Z �Redner and Walker, 1984�:

�MLE�arg max
�

L��;D��arg max
�

�P�D,Z;��dZ .

�B-1�

owever, L��;D� is often difficult to compute. The EM algorithm
eeks to find the MLE by applying two steps iteratively:

� Expectation step (E-step). Calculate the expected value of the
log-likelihood function with respect to the conditional distribu-
tion of Z, given D under the current estimate of the parameters
��t�:

Q�����t���EZ�D,��t��log L��;D,Z�� . �B-2�

Note that maximizing L��;D� is equivalent to maximizing
log L��;D�.
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� Maximization step (M-step). Find the parameter that maximiz-
es this quantity, i.e.,

��t�1��arg max
�

Q�����t�� . �B-3�

EM is particularly useful when the likelihood function has an ex-
onential form. The E-step becomes the sum of expectations of some
asy statistics, and the M-step involves maximizing a linear func-
ion. In such a case, it usually is possible to derive closed-form up-
ates for each step.

xample: Exponential mixture

Let Rn� �r1,r2, . . . ,rn� be a sample realization from independent
bservations generated by a mixture of two exponential distribu-
ions defined as

g�r�� ,�0,�1��� p�r��0�� �1�� �p�r��1�, �B-4�

here

p�r�� j��� j
�1 exp��r

� j
�, with r	0, � j �0, j�0,1.

�B-5�

ere, � j represents the mean of the jth distribution and � is the mix-
ng ratio. We introduce the set of missing variables Zn�
z1,z2, . . . ,zn� that determines the component from which each obser-
ation �ri�i�1

n originates, i.e.,

g�ri�zi�1��p�r��1� and g�ri�zi�0��p�r��0�,

ith

Pr�zi�1��� and Pr�zi�0��1�� . �B-6�

he aim is to estimate the unknown parameters ���� ,�0,�1�. The
LE using the observed and missing data obtained by maximizing

he log-likelihood function is

log L��;R,Z�� log �
i�1

n � �

�1
exp��ri

�1
�
zi

��1��

�0
exp��ri

�0
�
�1�zi�

� log� �

�1
�	

i�1

n

zi� 	
i�1

n
ziri

�1

� log�1��

�0
�	

i�1

n

�1�zi�� 	
i�1

n
�1�zi�ri

�0
.

�B-7�

-step

Given the current estimate of the parameter ��0
�t�,�1

�t�,� �t��, the con-
itional expectation of the binary variable zi is given by Bayes’ theo-
em:

Ai
�t��Ezi�ri,�0

�t�,�1
�t�,� �t��zi��Pr�zi�1�ri;�

�t�,�0
�t�,�1

�t��
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�

� �t� exp��ri

�1
�t� �

�1
�t�

� �t� exp��ri

�1
�t� �

�1
�t� �

�1�� �t��exp��ri

�0
�t� �

�0
�t�

. �B-8�

hus, the E-step is

Q�� ,�0,�1�� �t�,�0
�t�,�1

�t��� log� �

�1
�	

i�1

n

Ai
�t�� 	

i�1

n
Ai

�t�ri

�1

� log�1��

�0
�	

i�1

n

�1�Ai
�t��

� 	
i�1

n
�1�Ai

�t��ri

�0
. �B-9�

-step

The expression in equation B-9 has a linear form with respect to

i
�t�, and this makes the optimization for the unknown parameters
,�0,�1 straightforward. The M-step results in

� �t�1��
1

n
	
i�1

n

Ai
�t�, �B-10�

�1
�t�1��

	
i�1

n

Ai
�t�ri

	
i�1

n

Ai
�t�

, �B-11�

nd

�0
�t�1��

	
i�1

n

�1�Ai
�t��ri

	
i�1

n

�1�Ai
�t��

, �B-12�

here

Ai
�t��

p�ri��1
�t��� �t�

p�ri��1
�t��� �t��p�ri��0

�t���1�� �t��
. �B-13�

APPENDIX C

ALTERNATIVE PDF

The Rayleigh distribution is defined as

p�r�
 ��
r


 2 exp��r2

2
 2�, with r	0, �C-1�
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here 
 represents the mode of the distribution. The equivalent am-
litude threshold is rRay �where Ray stands for Rayleigh� is

rRay
2 �2


̂ 1
2


̂ 1
2


̂ 0
2 �1

�log�1� �̂

�̂
�� log� �

1��
�

� log� 
̂ 1
2


̂ 0
2�
 . �C-2�

he unknown parameters �
 0,
 1,� � are computed iteratively, in a
imilar way to the parameters of the exponential model, using the
M algorithm:

� �t�1��
1

n
	
i�1

n

Ai
�t�, �C-3�


 1
�t�1���1

2

	
i�1

n

Ai
�t�ri

2

	
i�1

n

Ai
�t�

, �C-4�

nd


 0
�t�1���1

2

	
i�1

n

�1�Ai
�t��ri

2

	
i�1

n

�1�Ai
�t��

, �C-5�

here

Ai
�t��

p�ri�
 1
�t��� �t�

p�ri�
 1
�t��� �t��p�ri�
 0

�t���1�� �t��
. �C-6�

he values 
 0 and 
 1 represent, respectively, 2�1/2 times the rms val-
e of the signal and the noise amplitudes.
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