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ABSTRACT

Well logs often are used for the estimation of seismic

wavelets. The phase is obtained by forcing a well-derived

synthetic seismogram to match the seismic, thus assuming

the well log provides ground truth. However, well logs are

not always available and can predict different phase correc-

tions at nearby locations. Thus, a wavelet-estimation

method that reliably can predict phase from the seismic

alone is required. Three statistical wavelet-estimation tech-

niques were tested against the deterministic method of seis-

mic-to-well ties. How the choice of method influences the

estimated wavelet phase was explored, with the aim of

finding a statistical method which consistently predicts a

phase in agreement with well logs. It was shown that the

statistical method of kurtosis maximization by constant

phase rotation consistently is able to extract a phase in

agreement with seismic-to-well ties. A statistical method

based on a modified mutual-information-rate criterion was

demonstrated to provide frequency-dependent phase wave-

lets where the deterministic method could not. Time-vary-

ing statistical wavelets also were estimated with good

results — a challenge for deterministic approaches because

of the short logging sequence. It was concluded that statis-

tical techniques can be used as quality control tools for the

deterministic methods, as a way of extrapolating phase

away from wells, or to act as standalone tools in the ab-

sence of wells.

INTRODUCTION

Wavelet phase mismatches occur frequently between final

processed seismic data and synthetic seismograms created from

well logs, which lead to potential complications in stratigraphic

and structural interpretation. Knowledge of the wavelet character

and phase is important since any phase ambiguities might result

in incorrect identification of low and high impedance contrasts

in a seismic section, thereby creating unnecessary interpretation

pitfalls (Brown, 2004). In a worst-case scenario with spatially

and/or temporally nonstationary wavelets exhibiting phase

changes of 90�, a positive reflection might correspond to a high

impedance contrast in one part of a section and to a low imped-

ance contrast in another. Likewise, unknown stationary phase

mismatches pose an issue if not accounted for. For example, a

45� phase deviation from zero-phase seismic data results in im-

pedance boundaries that cannot be attributed to peaks, troughs,

or zero crossings in the recorded traces.

The introduction of controlled-phase acquisition and process-

ing strategies has improved our control of seismic phase (Tran-

tham, 1994); yet phase mismatches continue to exist between

final processed data and synthetic seismograms created from

well logs. During processing, deterministic zero-phase wavelet

shaping corrections often are used to reshape the source impulse

response from near minimum phase to zero phase. Further bulk

adjustments to the phase can be made to account for attenuation

and dispersion effects. Typically, such corrections are applied

only in a global sense. Any remaining phase mismatches may

be eliminated through additional phase corrections using well

logs as ground truth. Thus a phase match between the data and

synthetic seismograms is forced.

Irrespective of the validity of this phase-correction method,

well logs are not always available and can predict different

phase corrections at nearby locations. Thus, there is a need for a

wavelet-estimation method that reliably can predict phase from

the seismic data, without reliance on well-log control. Such a

method could be used for phase extrapolation away from wells,

serve as a quality control tool, or even act as a standalone wave-

let-estimation technique.

We test three current statistical wavelet-estimation methods

against the deterministic method of seismic-to-well ties. We

consider three statistical techniques: a kurtosis-based approach
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of van der Baan (2008) producing a stationary, constant-phase

wavelet, the modified mutual-information-rate criterion method

of van der Baan and Pham (2008) yielding a stationary wavelet

with a frequency-dependent phase, and finally a nonstationary

extension of the kurtosis-based technique resulting in a time-

varying, constant-phase wavelet. Specifically, we explore the

extent to which the choice of method influences the estimated

wavelet phase, with the aim of finding a statistical method

which consistently predicts a phase in agreement with that

obtained from well logs (Figure 1).

First, we describe the scientific rationale of each wavelet-esti-

mation technique. We then apply the statistical and deterministic

seismic-to-well-tie methods on three data sets from the North

Sea, and compare the phase and amplitude spectra of the result-

ing wavelets. Finally, we question whether well logs always are

the optimum source of wavelet phase information and advocate

the use of statistical methods as a complementary tool or reli-

able alternative.

METHODOLOGY

The theory and practice of seismic-to-well tying is well estab-

lished (Walden and White, 1984; White and Simm, 2003). Sonic

logs are calibrated using well check-shot data to ensure that the

time-depth relationship matches that of the seismic data. The

calibrated sonic logs then are combined with the density logs to

calculate impedance and reflectivity series for each well site.

An initial zero-phase statistical wavelet, with amplitude spec-

trum calculated from the square root of the amplitude spectrum

of the autocorrelation of each trace, then is extracted from the

seismic data. This wavelet is used to construct synthetic seismo-

grams at each well location as per the convolutional model of

the seismic trace.

Applying alterations to the wavelet amplitude and phase spec-

tra, such that a maximum correlation is found between the syn-

thetic seismograms and seismic traces, allows a deterministic

wavelet to be estimated at each well location. This process can

be modified to estimate either frequency-dependent or constant-

phase wavelets. Our methodology followed that of White and

Simm (2003), insomuch as “stretch and squeeze” was avoided

and the check-shot calibration, plus small manual bulk time

shifts, was relied upon to align the well log time-depth relation-

ship to that of the seismic data.

For the three data sets tested in this study, this approach was

sufficient to produce seismic-to-wells ties with high coefficients

of correlation. For each data set tested, the time range used for

deterministic wavelet estimation was at least twice the wavelet

length (i.e., more than 0.5 s). Some important assumptions in

the seismic-to-well tie technique are that the well logs provide

ground truth, the convolutional model holds, and the wavelet is

invariant in both time and space.

All of the statistical methods tested estimate phase from the

data without appealing to well logs (van der Baan, 2008; van

der Baan and Pham, 2008). This is done by using a consequence

of the central limit theorem: that convolution of any filter with a

white time series (with respect to all statistical orders) renders

the amplitude distribution of the output more Gaussian. Thus,

the optimum deconvolution filter will ensure that the amplitude

distribution of the deconvolved output is maximally nonGaus-

sian (Donoho, 1981). Well-log analyses have confirmed that the

earth’s reflectivity series is nonGaussian (Walden and Hosken,

1986) and, to first order, white (Walden and Hosken, 1985).

Instead of deriving optimum deconvolution filters directly, one

also can invoke Wiener filtering which is expressed in terms of

the seismic wavelet (Berkhout, 1977). As a consequence, the

seismic wavelet can be estimated by designing the optimum

Wiener deconvolution filter yielding the maximally nonGaussian

outcome when applied to the data (van der Baan, 2008).

The three statistical techniques we consider are the kurtosis-

based approach of van der Baan (2008) producing a stationary,

constant-phase wavelet, the modified mutual-information-rate

criterion of van der Baan and Pham (2008) yielding a stationary

wavelet with a frequency-dependent phase, and

finally a nonstationary extension of the kurtosis-

based technique resulting in a time-varying,

constant-phase wavelet.

The first technique analyzes the nonGaussian-

ity of the data when subjected to a series of

constant phase rotations. The angle correspond-

ing to the maximum kurtosis value determines

the most likely wavelet phase (Levy and Olden-

burg, 1987, Longbottom et al., 1988, White,

1988). In this approach, one initially ignores the

amplitude spectrum of the wavelet, and the op-

timum Wiener filter becomes the phase rotation

that maximizes the nonGaussianity of the data.

The technique appeals to the kurtosis since this

is a fourth-order statistic measuring deviation

from Gaussianity (Mendel, 1991). The corre-

sponding amplitude spectrum of the wavelet

subsequently is obtained by spectral averaging

of the analyzed data portion.

An assumption of this approach is that the

seismic wavelet in the later stages of the proc-

essing sequence is approximately constant-

phase. This approximation greatly reduces the

Figure 1. How reliable is statistical wavelet estimation? We evaluate the level of
phase agreement among three current statistical wavelet-estimation methods and the
deterministic method of seismic-to-well ties.

V60 Edgar and van der Baan

Downloaded 23 Jun 2011 to 142.244.190.180. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



number of degrees of freedom, thus creating a robust estimation

technique. This method can derive a single, stationary, constant-

phase wavelet from the entire data set, or a time-varying, con-

stant-phase wavelet by dividing the data into partly overlapping

sequences (van der Baan, 2008).

Longbottom et al. (1988) and White (1988) demonstrate that

the method is stable if the peak frequency is smaller than the

wavelet passband, or equivalently, when the bandwidth exceeds

1.585 octaves. This condition is unlikely to be problematic

except for legacy data, where the bandwidth can be narrow and

the signal-to-noise ratio poor. The impact of variation in the sig-

nal-to-noise ratio on statistical wavelet estimation is tested by

van der Baan and Pham (2008) on a realistic synthetic data set.

The second statistical method tested can estimate wavelets

with frequency-dependent phase using a modification of the mu-

tual-information-rate criterion. This criterion measures the

whiteness of a signal using statistics of all orders (Cover and

Thomas, 1991), thereby also appealing to higher-order statistics.

Unfortunately, whiteness-based deconvolution criteria have the

disadvantage of boosting the noise level outside the passband of

the wavelet because they enforce whiteness over the entire fre-

quency range. This leads to problems if the actual wavelet is

band limited.

Van der Baan and Pham (2008) present a modification of the

mutual-information rate that takes the band limited nature of

seismic wavelets into account, and whitens the deconvolution

output only within the wavelet passband. Their approach esti-

mates the frequency-dependent wavelet phase by maximizing

the negentropy of the deconvolution outcome while ensuring

that the wavelet amplitude spectrum remains close to that of the

observations. The negentropy is a general-purpose nonGaussian-

ity criterion appealing to statistics of all orders. The spectral

regularization condition ensures that when Wiener filtering is

invoked, whitening occurs only within the wavelet passband,

thereby preventing noise amplification. This

approach allows us to derive wavelets with fre-

quency-dependent phase without appealing to

well logs.

On the one hand, an inversion for wavelets

with frequency-dependent phase involves a sig-

nificantly larger number of degrees of freedom

than for constant-phase wavelets, rendering an

extension to the nonstationary case difficult in

case of noisy observations. We therefore do not

attempt to analyze the seismic data sets for the

presence of nonstationary, frequency-dependent

phase wavelets, contrary to the constant-phase

case. On the other hand, van der Baan and Pham

(2008) demonstrate that the method adequately

can estimate seismic wavelets even when the

peak frequency is larger than the bandwidth, con-

trary to the kurtosis-based approaches.

RESULTS

We use three data sets from different parts of

the North Sea to extract and compare the results

of statistical and deterministic wavelet estima-

tion. We enforce that all seismic-to-well ties

use a constant-phase wavelet as frequency-dependent wavelets

were deemed to be unrealistic. This point will be addressed

more fully in the discussion section.

All well ties have correlation coefficients above 70% over a

time window at least twice the length of the estimated wavelets.

For each data set we show the seismic-to-well tie and compare

the shapes of the estimated deterministic and statistical wavelets

and their amplitude spectra. We also provide extracted portions

of some deconvolution results to highlight the importance of

correct wavelet estimates for seismic deconvolution. Two data

sets had known phase issues; the third data set is intended as a

control set since it was anticipated to be zero phase.

The bandwidths, in octaves, for the three seismic data sets

were 2.46, 2.70, and 3.50 respectively. This was calculated as

the width in octaves at 5 dB below the peak frequency of the

seismic data. Therefore, all three data sets meet the precondi-

tion of Longbottom et al. (1988) and White (1988) for stability

of kurtosis-based phase estimation methods; that the seismic

bandwidth must exceed 1.585 octaves. This is unsurprising as

we are using modern 3D seismic data, but nevertheless it is

important to check prior to using kurtosis-based phase estima-

tion techniques.

Data set 1: Deterministic
seismic-to-well-tie wavelet

Figure 2 shows the 2D seismic section, well location and asso-

ciated seismic-to-well tie for data set 1. The seismic-to-well tie is

reasonably high quality over the 600 ms interval where both

sonic and density logs were available. The correlation coefficient

for this tie is 81%. The time-domain wavelet estimated from this

seismic-to-well tie is shown in Figure 3, and a 98� phase rotation

is predicted. Unanticipated phase perturbations of this size can

lead to erroneous interpretations. A 90o phase rotation implies

Figure 2. 2D seismic section with well location of data set 1. The location and quality
of the seismic-to-well tie is shown in the inset: left, synthetic seismogram; right, seis-
mic trace at the well location. The seismic-to-well tie correlation coefficient is 81%.
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that the section is close to an impedance section, where the zero

crossings relate to impedance boundaries and peak amplitudes

occur within layers instead of at layer interfaces. Obviously such

large perturbations from zero phase may lead to misleading inter-

pretations if not correctly accounted for.

Data set 1: Statistical wavelets and phase comparisons

Figure 3 also shows the time-domain wavelets estimated

using the three statistical methods. It is clear from visual

inspections that there is good agreement between the statistical

and deterministic methods in terms of estimated phase. For

example, the statistical constant-phase wavelet estimated using

the method of van der Baan (2008) has a phase rotation of 84�.
This is 14� lower than the phase predicted by the deterministic

seismic-to-well tie method, and the difference is hard to see

with the naked eye.

The statistical frequency-dependent wavelet estimated by the

method of van der Baan and Pham (2008) is similar to the

deterministic seismic-to-well tie and the statistical constant-

phase wavelet; it is almost asymmetric. The most noticeable dif-

ference between the deterministic and statistical wavelets occurs

in the number of side lobes; an item we will address in the dis-

cussion section.

To make a quantitative comparison between the statistical fre-

quency-dependent phase wavelet and all constant-phase wave-

lets, we approximated the former wavelet by a constant-phase

rotation. Thus, a zero-phase wavelet with an amplitude spectrum

matching that of the frequency-dependent wavelet is created and

phase rotated until a maximum correlation is found between the

two. This angle of rotation corresponds to the constant phase

approximation of the frequency-dependent wavelet, and was

found to be 83�. The value of the maximum cross-correlation

coefficient is a measure of the validity of the constant-phase

approximation. For data set 1, this value was 0.99, indicating

that the constant phase approximation holds.

Figure 3 also shows the estimated time-varying constant-

phase wavelets. The optimum wavelet required for deconvolu-

tion of data set 1 may be nonstationary with respect to time.

This is displayed by the clear phase change with depth predicted

by the method of van der Baan (2008). Each wavelet is obtained

using a time-window of 3.3 s. The shallowest wavelet phase

agrees with all other time-stationary phase estimates at 84�. The

wavelet phase estimated from the middle section of data is

lower, at 66�. The phase is estimated to rise slightly to 69� to-

ward the end of the section. The possible origins of this time-

variation are addressed in the discussion section.

Figure 3 demonstrates that the deterministic and all statistical

wavelets visually are in close agreement in terms of estimated

phase, with the statistical wavelets displaying less side lobe

energy. In the next subsection we examine their amplitude

spectra.

Data set 1: Amplitude spectra

Figure 4 displays the amplitude spectra of all wavelets esti-

mated for data set 1 as shown in Figure 3. The amplitude spec-

tra of the statistical wavelets are similar, with stronger low-fre-

quency components than the deterministic estimate; yet the total

passband is similar in all wavelets.

All statistical techniques involve spectral averaging of the

recorded data and appear to produce smoother amplitude spectra

than the auto-correlation method used in the deterministic seis-

mic-to-well tie wavelet estimation. The deterministic method uses

the square root of the amplitude spectrum of the

autocorrelation of each trace, averaged over all

traces, to estimate the wavelet amplitude spec-

trum. This estimate is confined to the time win-

dow used in wavelet phase estimation.

The statistical methods use the average

power spectrum of each trace, averaged over

all traces. However, as the statistical methods

do not use a time window (apart from the

time-varying method) the amount of data

included in the spectrum calculation is greater,

as is the amount of data being averaged. As a

result, we would not expect the amplitude

spectra to match perfectly across the statistic

and deterministic methods. It would seem,

though, that spectral averaging appears to pro-

duce wavelets with lower amplitude side lobes

and less ringing than the auto-correlation

method.

Time-varying statistical wavelet estimation

produces an amplitude spectrum for each time

window. Thus, the effect of attenuation and

dispersion should be apparent. In this case,

however, attenuation and dispersion correc-

tions during processing have masked the

expected fall in overall amplitude and loss of

high frequencies with depth.

Figure 3. Wavelets estimated from data set 1 (a) deterministic seismic-to-well tie
(/¼ 98�), (b) statistical constant phase (/¼ 84�), (c) statistical frequency-dependent
phase (/ � 83�), and (d) statistical time-varying constant phase (/avg¼ 73�). Three
time-varying wavelets have been extracted, numbered 1–3 with increasing time. All
wavelets are similar in appearance with close constant-phase equivalents, yet the sta-
tistical wavelets contain less side lobe energy.
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Data set 1: Deconvolution results

Wiener deconvolution is performed on the seismic section in

Figure 2 to approximately remove the effects of the estimated

wavelets. A separate Wiener filter is designed as per Equation 5

in van der Baan (2008) using the wavelets from each statistical

method tested in this study. Since the deconvolution results are

highly similar, we show the outcome using the statistical con-

stant-phase wavelet only. The Wiener deconvolution filters

designed using all statistical wavelets are able to zero phase the

data to an accuracy of 610�.
Figure 5 displays a zoomed-in region of data set 1 before and

after Wiener deconvolution, as well as the constant-phase wave-

let used in the filter design and the estimated statistical wavelet

after deconvolution. The region shown encompasses the data

used to make the seismic-to-well tie in Figure 2. The strong

events at approximately 0.8 and 1.0 seconds clearly have been

phase rotated toward zero phase since the waveforms of the

strongest reflectors now are more symmetric. Reapplication of

the statistical constant-phase method on data set 1 after decon-

volution confirms these visual observations (Figure 5c and 5d).

The original 90� phase rotation estimated has been reduced suc-

cessfully to zero via Wiener deconvolution.

Data set 2: Deterministic
seismic-to-well-tie wavelet

Figure 6 shows a seismic section through data set 2, its well

location, and associated seismic-to-well tie. The seismic-to-well

tie again gives a correlation coefficient of 81% over the 600 ms

logging interval. The time-domain wavelet estimated from this

seismic-to-well tie is shown in Figure 7, and a

58� phase rotation is predicted.

It is unlikely that a phase rotation of this

magnitude was planned for in the data acquisi-

tion and processing. Impedance boundaries in

this case would not be attributable to the peak,

trough, or zero crossing of the wavelet, and so

phase deconvolution must be applied before

conventional interpretation can be performed.

The high correlation coefficient of 81% in the

seismic-to-well tie gives us confidence in the

estimated deterministic wavelet and its phase.

Data set 2: Statistical
wavelets and phase comparisons

We estimate again a constant-phase, a fre-

quency-dependent phase, and three time-varying

wavelets directly from the data by means of the

statistical techniques of van der Baan (2008)

and van der Baan and Pham (2008). The result-

ing statistical wavelets are shown in Figure 7.

A visual comparison of the deterministic and

statistical wavelets reveals that small phase dis-

crepancies exist. The statistical constant-phase

method predicts a phase rotation of 36�, which

is a 22� lag with respect to the deterministic

seismic-to-well tie wavelet. This phase rotation

is near the limit of what the eye can notice and

may not affect a structural interpretation. It

would, however, influence the result of a quantitative interpreta-

tion technique.

The statistical frequency-dependent phase wavelet is esti-

mated to have a constant-phase equivalent rotation of 31�,
which is very close to the statistical constant-phase value; yet

the frequency-dependent phase wavelet looks noisier. This may

be caused by the significant increase in number of degrees of

freedom when we allow for a different phase at each frequency,

rendering the method more noise sensitive.

Figure 7 also shows the estimated time-varying constant-

phase wavelets. Similar to data set 1, the optimum wavelet

required for deconvolution of data set 2 may be nonstationary

with respect to time. Each wavelet is obtained using a time-win-

dow of 2.4 s. Interestingly, at 69�, the shallowest wavelet phase

is in close agreement with the deterministic seismic-to-well tie

estimate of 58�, whereas the deeper two statistical phase esti-

mates of 36� agree with the other statistical methods. Hence, the

phase estimate from the seismic-to-well tie appears correct over

the limited logging time range available, but is not representa-

tive of the entire section. The statistical methods also are sensi-

tive to data in the deeper section, and thus estimate a smaller

phase advance.

Similar to Figure 3, Figure 7 demonstrates that the determin-

istic and statistical wavelets differ only by a small phase dis-

crepancy, just noticeable by eye. Contrary to data set 1 (Figure

3), there is no significant difference in the number of side lobes

for the deterministic and statistical wavelet estimates, although

the deterministic and frequency-dependent statistical wavelets

come across as the more noisy estimates.

Figure 4. Amplitude spectra of wavelets shown in Figure 3 as estimated from data set
1 (a) deterministic seismic-to-well tie, (b) statistical constant phase, (c) statistical fre-
quency-dependent phase, and (d) statistical time-varying constant phase. The deter-
ministic amplitude spectrum is calculated over the same window of data as is used in
the deterministic phase estimation, whereas the time-stationary statistical methods use
the whole data section for both. Three time-varying wavelets have been extracted,
numbered 1–3 with increasing time. The amplitude spectra of the statistical wavelets
are similar, with stronger low-frequency components than the deterministic estimate.
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Data set 2: Amplitude spectra

Figure 8 displays the amplitude spectra of all wavelets esti-

mated for data set 2 as shown in Figure 7. The total passband

again is similar for all wavelet estimates, with the statistical

wavelet spectra containing slightly more energy at lower fre-

quencies than the deterministic seismic-to-well tie wavelet.

The method of van der Baan and Pham (2008) to estimate the

statistical frequency-dependent wavelet includes an amplitude

whitening step constrained to the wavelet passband. In this

instance the whitening appears to be too harsh, producing a box-

car shaped amplitude spectrum and hence increased ringing in

the time domain. The constant-phase and time-varying statistical

techniques use only spectral averaging and again have a simpler

and “cleaner” appearance of the time-domain wavelets than the

auto-correlation method used in the seismic-to-well tie.

As with data set 1, attenuation corrections during processing

have hidden the expected fall in overall amplitude and loss of

high frequencies with depth. This is evident since the ampli-

tude-spectra of all three time-varying wavelets are similar.

All deterministic and statistical wavelets again can be used

for phase-only or amplitude-and-phase deconvolution, e.g., by

means of Wiener filtering (van der Baan, 2008). Analogous to

Figure 5, phase-only deconvolution again can reveal subtle dif-

ferences between the original and filtered seismic data, which,

given the estimated constant-phase rotations in the range of 31�

to 58�, could complicate an interpretation unnecessarily.

Data set 3: Deterministic
seismic-to-well tie wavelet

The seismic-to-well tie made for data set 3 gave a correlation

coefficient of 86% over the 500 ms window. The time-domain

wavelet estimated from this seismic-to-well tie is shown in Fig-

ure 9, and a –2� phase rotation is predicted. The very high cor-

relation coefficient indicates that the data is high quality and

that the tie is sound. The resulting estimated wavelet is highly

desirable from an interpretation perspective as impedance boun-

daries in this case would correspond to the dominant peaks and

troughs in the seismic data.

Data set 3: Statistical wavelets and phase comparisons

Again, we estimate a constant-phase, a frequency-dependent

phase, and three time-varying wavelets directly from the data by

means of the statistical techniques. The resulting statistical

wavelets are shown in Figure 9.

Of all three data sets tested, this data set 3 shows the closest

visual agreement in wavelet estimates across all four techniques

used. The statistical constant-phase method predicts a phase

rotation of 3�, which is only a 5� advance with respect to the

deterministic seismic-to-well tie wavelet. This phase rotation

almost is below the limit of what the eye can notice, and would

not make a visual difference to the seismic data.

The statistical frequency-dependent phase wavelet is esti-

mated to have a constant-phase equivalent rotation of 5�, which

is very close to both the statistical constant-phase value and the

deterministic seismic-to-well tie estimate. Again, it is unlikely

that such a small phase rotation would alter an interpretation.

Figure 5. Wiener deconvolution results. (a) Section before decon-
volution and (b) estimated constant-phase wavelet. (c) Section af-
ter deconvolution and (d) new constant-phase wavelet. The events
at 0.8 and 1.0 seconds have been rotated toward zero phase after
deconvolution, as evidenced by the more symmetric waveforms
of the strongest reflectors.
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Figure 9 also shows the estimated time-varying constant-

phase wavelets. Unlike data sets 1 and 2, the wavelets esti-

mated by this method appear nearly stationary with respect to

time. Each wavelet is obtained using a time-window of 2.4 s.

The most shallow wavelet phase is 9�, whereas

the deeper two statistical phase estimates both

are 3�.
Figures 3, 7, and now 9 demonstrate that the

deterministic and statistical wavelets differ only

by a small phase discrepancy, just noticeable to

the eye. As with data set 1, the results from

data set 3 indicate that the statistical methods

produce cleaner looking wavelets with fewer

side lobes than the deterministic seismic-to-well

tie technique.

Data set 3: Amplitude spectra

Figure 10 displays the amplitude spectra of

all wavelets estimated for data set 3, as shown

in Figure 9. The total passband is similar for all

statistical wavelet estimates, but the determinis-

tic seismic-to-well tie wavelet passband is nar-

rower. This, combined with the dual peaks dis-

played in the amplitude spectrum, manifests as

noise and ringing in the time domain, apparent

in Figure 9. The spectral averaging used by the

statistical techniques makes for a simpler and

“cleaner” appearance of the time-domain wave-

lets than the auto-correlation method used in the

seismic-to-well tie process.

As with data sets 1 and 2, attenuation correc-

tions during processing have hidden the

expected fall in overall amplitude and loss of

high frequencies with depth. This is evident

since the amplitude-spectra of all three time-

varying wavelets are similar.

All deterministic and statistical wavelets

again can be used for phase-only or amplitude-

and-phase deconvolution. However, in this case

phase deconvolution is unlikely to be necessary,

as the data already appear to be zero phase.

DISCUSSION

Numerous reasons exist why well logs may

not represent ground truth — the fundamental

assumption in any seismic-to-well tie. Signifi-

cant well-log interpretation, calibration and cor-

rections are required to produce the reflectivity

series required for the seismic-to-well tie

process.

This human element, combined with variable

log quality and depth errors, makes wavelets

estimated from seismic-to-well ties hard to

reproduce accurately. It is unusual for any two

persons to estimate precisely the same wavelet

given identical suites of well logs. However, in

this study the close correspondence of all wave-

let estimates gives us confidence that both the

statistical and deterministic methods have reproduced a close

approximation of the true seismic wavelet over the logging

interval.

Figure 6. 2D seismic section with well location of data set 2. The location and quality
of the seismic-to-well tie is shown in the inset: left, synthetic seismogram; right, seis-
mic trace at the well location. The seismic-to-well tie correlation coefficient is 81%.

Figure 7. Wavelets estimated from data set 2 (a) deterministic seismic-to-well tie
(/¼ 58�), (b) statistical constant phase (/¼ 36�), (c) statistical frequency-dependent
phase (/ � 31�), and (d) statistical time-varying constant phase (/avg¼ 47�). Three
time-varying wavelets have been extracted, numbered 1–3 with increasing time. A
small phase discrepancy is visible between the deterministic and statistical methods.
The time-varying wavelets indicate that the phase advance estimated by the determin-
istic seismic-to-well tie is true only of the shallow section.
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The most noticeable difference between the

deterministic and statistical wavelets occurs in

the number of side lobes. As mentioned previ-

ously, this is a result of the difference in how the

amplitude spectrum is calculated by the two

methods. The statistical methods lead to much

simpler wavelets without the side lobes of the

seismic-to-well tie wavelets. We constrained the

deterministic wavelets to have constant, fre-

quency independent phase. Relaxing this con-

straint produces higher correlation coefficients

between the synthetic seismogram and seismic

trace (Figure 11), yet the resulting wavelets have

increased side-lobe energy and look unrealistic.

This problem, noted by Ziolkowski (1991),

may be a consequence of using synthetic seis-

mogram to seismic correlation to estimate a

wavelet; if the initial correlation is too low, the

method may contaminate the true wavelet and

merely output the filter required to remove the

source time function and all remaining unde-

sired components of the earth response. It is

possible that the side lobes in the constant-

phase seismic-to-well tie wavelets are artifacts

that beautify the seismic-to-well tie, creating a

statistical transfer function instead of retrieving

the underlying seismic wavelet.

Statistical methods routinely are used to esti-

mate wavelet amplitude spectra, whether by

auto-correlation methods, spectral averaging, or

another technique. Such methods are used

widely and generally are considered reliable.

As such, it was not the goal of this study to

evaluate amplitude spectra estimation, but

rather to address the issue of statistical estima-

tion of wavelet phase.

The time-varying constant-phase statistical

wavelet-estimation technique of van der Baan

(2008) estimated at least some degree of non-

stationary phase within each data set tested.

This is not unexpected: attenuation and disper-

sion effects are frequency and time dependent,

and thus will cause frequency and time varia-

tion of wavelet phase. Standard corrections at

the data processing stage are unlikely to

account fully for these effects. However, it is

possible that geologic reasons exist for nonsta-

tionary wavelet phase, such as the presence of

thin beds tuning the wavelet and producing an

apparent 90� phase rotation (Edgar and Sel-

vage, 2011).

Where nonstationary phase is estimated, with-

out further information about the subsurface

(such as a well log), it is not unambiguously pos-

sible to attribute the cause of time-dependent

phase to any individual factor: It may be a rem-

nant from acquisition and processing, it could be

geologic, or it might be natural instability of the

statistical method (Edgar and Selvage, 2010).

However, a well-constrained, nonstationary

Figure 8. Amplitude spectra of wavelets estimated from data set 2 (a) deterministic
seismic-to-well tie, (b) statistical constant phase, (c) statistical frequency-dependent
phase, and (d) statistical time-varying constant phase. The deterministic amplitude
spectrum is calculated over the same window of data as is used in the deterministic
phase estimation, whereas the time-stationary statistical methods use the whole data
section for both. Three time-varying wavelets have been extracted, numbered 1–3
with increasing time. The total passband of all wavelets is similar, but the statistical
frequency-dependent phase technique has introduced some ringing in the time domain
(Figure 7) through a slightly too-harsh whitening stage implicit within the method.

Figure 9. Wavelets estimated from data set 3 (a) deterministic seismic-to-well tie
(/¼ –2�), (b) statistical constant phase (/¼ 3�), (c) statistical frequency-dependent
phase (/ � 6�) and (d) statistical time-varying constant phase (/avg¼ 5�). Three time-
varying wavelets have been extracted, numbered 1–3 with increasing time. All wave-
lets are visually and quantitatively in close agreement, with the deterministic method
again providing the noisiest estimation.
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Figure 10. Amplitude spectra of wavelets estimated from data set 3 (a) deterministic seismic-to-well tie, (b) statistical constant phase, (c)
statistical frequency-dependent phase, and (d) statistical time-varying constant phase. The deterministic amplitude spectrum is calculated
over the same window of data as is used in the deterministic phase estimation, whereas the time-stationary statistical methods use the whole
data section for both. Three time-varying wavelets have been extracted, numbered 1–3 with increasing time. The total passband of the
deterministic wavelet is lower than that of the statistical wavelets, and also displays two peaks; this explains its more noisy appearance in
the time domain (Figure 9).

Figure 11. Comparison of deterministic seismic-to-well tie wavelets: (a) constant phase deterministic seismic-to-well tie wavelet above its
corresponding well tie with correlation coefficient of 81%, (b) frequency-dependent phase deterministic seismic-to-well tie wavelet above
its corresponding well tie with correlation coefficient of 89%. Comparison of (a and b) panels shows that relaxing the constant phase
approximation increases the well-tie correlation coefficient, but introduces unrealistic and undesirable side lobes and noise to the wavelet.
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phase analysis has potential as an interpretational tool. For

instance, it has been shown to highlight subtle variations in the

local geology such as thin beds, pinch outs, meandering channels,

carbonate reefs and variations in coal sequences (van der Baan

and Fomel, 2009; van der Baan et al., 2010; Edgar and Selvage

2011).

CONCLUSIONS

Deterministic corrections commonly are applied to rectify

phase mismatches between final processed seismic data and syn-

thetic seismograms created from well logs. These corrections

force the synthetic seismograms to match the seismic data by

assuming the well logs provide ground truth. However, different

nearby wells often suggest different phase corrections, and well

logs are not always available.

We have shown that statistical methods can be used to estimate

wavelets from the seismic data alone, without the need for well

control. Thanks to improvements in data quantity, bandwidth and

noise suppression, allied with refining of the statistical techniques,

these methods now can robustly estimate wavelet phase in close

agreement with estimates obtained from well logs, directly from

modern seismic data. The constant-phase method, in fact, is robust

enough to allow the estimation of time-varying wavelets – a real

challenge for deterministic approaches because of the generally

short logging sequence. Frequency-dependent statistical wavelet

estimation also is viable, leading to realistic looking wavelet esti-

mates even when the seismic-to-well tie method cannot.

When applied to modern seismic data which meet the precon-

ditions of kurtosis-based algorithms, the statistical methods can

be used as a reliable quality control tool for the deterministic

methods, a way of extrapolating phase away from wells, or as

standalone tools in the absence of wells.
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